

Risk Assessment and Mitigation
Cohort 2 Team 1
Ahmet Abdulhamit

Zoey Ahmed
Tomisin Bankole

Alanah Bell
Sasha Heer

Oscar Meadowcroft
Alric Thilak

Risk Management Process:

The team used a lightweight 4-step risk management process as the first version of the
project is small scale. This meant a simple, iterative review cycle kept the process efficient
without any excessive documentation overhead and ensured that risks were continuously
identified, assessed and monitored throughout development.

1.​ Identification: Risks were identified during weekly sprint planning meetings through
team brainstorming and reviewing the previous sprint issues discovered.

2.​ Analysis: After being identified, each risk was assessed qualitatively using a 1-5
scale for likelihood (5 = likely) and another 1-5 scale for impact severity (5 being the
highest).

3.​ Planning/Mitigation: For each risk the team proposed practical actions to take to
reduce the likelihood and impact of every risk identified.

4.​ Monitoring: At the end of each sprint, the risk register was reviewed and the
impact/likelihood scores were altered depending on situation changes. Each risk was
also assigned an owner responsible for tracking it and updating its status during
reviews.

Risk Register Format Justification:
Formatting: The group used a tabular register to manage risks. The tables are grouped by
risk type (technical, organisational, scheduling, quality) to help keep each one concise,
informative and easy to maintain throughout the project. Each risk entry records what the
risk is, likelihood, impact, mitigation and ownership.

Risk Register

Likelihood Key:
Likely = 5/5
Possible = 4/5
Unlikely = 3/5
Rare = 2/5
Very Rare = 1/5

Impact Key:
Very high = 5/5
High = 4/5
Moderate = 3/5
Low = 2/5
Very Low = 1/5

Technical
Risk ID:

Risk Likelihood Impact and Severity Mitigation Ownership

TR1 New tools Likely 3 - Likely that there will be
small bursts of defects and
reworks from
misconfiguration. New
tools could cause early
uncertainty and slower
delivery.

Coding members begin to
practise and ‘play’ with
the new tools from
week1. This early
familiaration will help
ease uncertainty before
the main coding begins.

The development
team learns new
tools. The Scrum
Master creates
practice sessions
and watches
progress. Method
Leads focus is
documentation.

TR2 Members do
not show up
to meetings.

Likely 4 - May delay decisions or
cause tasks to become
misaligned. This will force
reworks and idle ‘blocked’
time. This would delay
tasks and testing time.
This may lead to schedule
slippage as the live
feedback loop can't work
with poor coordination and
missed touchpoints.

Using Whatsapp as a
continuous
communication channel.
Each member should
post the progress and any
roadblocks. This should
also be daily. This will
maintain the coordination
even if attendance drops.
Tasks won't stall.

Scrum Master
structures meetings
and ensures
engagement. Team
members update
through WhatsApp
and Google Docs.
Method Leads check
sprints and records
patterns in
attendance.

TR3 Integration
issues

Possible 3 - This could trigger
rework cycles and delay
the next demo. It is likely
that integration problems
will convert into re-works
(extra time and costs) and
also schedule slips.

By adopting integration
with small and frequent
merges to a shared
branch where every
merge must compile. If
we schedule a weekly
integration sprint it will
help catch
incompatibilities and
mean fixes are easier.

Developers manage
code merging and
testing. Architects
make sure UML and
design align with the
codebase. Scrum
Master schedules
weekly integration
checks(sprints) and
creates meetings for
issue resolution.

TR4 Learning
curve for
LibGDX and
UML tools

Likely 3 - Slower development of
features while learning
APIs and modelling
notation. A weak UML
quality will risk
miscommunication,
ultimately leading to a
rework.

Focus on understanding
UML examples online and
from lectures and use
short internal meetings to
discuss and help each
other understand. This
will improve the overall
team's clarity of UML.

Scrum master will
make sure members
understand UML
examples by
continuously
discussing members'
work.

TR5 Performance
limitations

Possible 3 - This will force late
optimisation or feature
cuts. This could result in a
worse user experience and
missed targets.

If we define a
performance baseline
early on and keep
graphics light with
incremental testing
(performance) after each
feature, we should
prevent late surprises.

Scrum master
reviews work done
after weekly sprints.
Method Leads
should update the
plan accordingly.
Members should do
work agreed at
sprints and
communicate
delays.

TR6 Version
control
conflicts

Possible 3 - Time will be lost and
potentially stall the team
near deadlines.

We should only merge
features after code review
and resolution. This
minimises risks involved
with integration.

The scrum master is
to maintain the
communication
channel. Architects
should be updating
developers and
should make sure
documents show the
changes.

Organisational
and Team
Risk ID:

Risk Likelihood Impact and Severity Mitigation Ownership

OTR1 People are
sick

Likely 4 - Tasks could be
delayed or reallocated
which will lead to a
short-term productivity
drop.

We should keep tasks
small and share
documentation so others
can help.

Scrum Master will
reallocate work. All
members will
support key tasks.

OTR2 Communica
tion
breakdown

Possible 3 - Misunderstanding
could lead to duplicated
work (or missed work).

Continuous updates
through whatsapp and a
clear outline of roles in the
documents will help
prevent this.

Scrum master will
update through
WhatsApp. Method
Leads will maintain
the planning
document.

OTR3 Uneven
workload

Possible 3 - Some members
could be overworked
and others may end up
idle which will reduce
quality and morale.

Weekly sprints provide an
opportunity to rebalance
tasks.

Scrum Master will
rebalance the
sprint tasks.
Method Leads will
track all of the
changes and each
member should
assist as needed.

OTR4 Limited
availability

Likely 4 - Less available
members will cause
sprint goals to not be
met.

Continuous
communication on
whatsapp means we can
plan ahead, prioritising
core features.

Scrum Master
manages
scheduling. Team
members make
absences known
early.

Scheduling
and Delivery
Risk ID:

Risk Likelihood Impact and Severity Mitigation Ownership

SDR1 Underestimating
time needed to
complete task

Possible 4 - Could delay the
delivery of sprints. Could
lead to features being
rushed or even dropped.

It would be a good
idea to break tasks
into smaller
substacks. We
could also include
buffer times in
sprint planning.

Scrum Master will
lead the planning
of sprints. Method
Leads will record
any issues with
estimation.
Developers will
provide timing
input.

SDR2 Missing sprint
goals

Possible 3 - This would build
pressure and also
reduce the visibility of

We should
prioritise the
minimum viable

Scrum Master
monitors the
progress of

progress. product tasks first. sprints. Method
Leads direct the
team in prioritising
tasks.

Quality and
Requiremen
t Risk ID:

Risk Likelihood Impact and Severity Mitigation Ownership

QRR1 Misinterpretation
of customer
requirements

Possible 4 - Features will not meet
their expectations. This
would also waste the
developing effort.

We should confirm
requirements early with
team reviews and ensure
clear meeting notes.

Zoey, Sasha and
Ahmet should
confirm the
requirements.
Scrum Master
should review the
requirements.

QRR2 Lack of
traceability

Possible 3 - This would make it
hard to verify tasks which
fit the requirements.

Git commits and
continuous updates will
be crucial.

Developers will
ensure
documentation.
Developers keep
the commits
linked. Scrum
master checks
progress.

QRR3 Lack of testing

Possible 4 - Could lead to
undetected bugs or
unstable features. This
will reduce the quality of
features.

We should implement
unit tests and run
playtests after each
sprint.

Developers
handle the
testing. Scrum
Master monitors
the inclusion of
tests.

	Risk Assessment and Mitigation
	
	
	
	
	
	
	
	
	
	
	
	Risk Management Process:
	Risk Register

