
Architecture
Cohort 2 Team 1
Ahmet Abdulhamit

Zoey Ahmed
Tomisin Bankole

Alanah Bell
Sasha Heer

Oscar Meadowcroft
Alric Thilak

Introduction and Tools:

The system architecture for Escape from University was modelled using the Unified
Modelling Language (UML). This language allowed us to provide a formal description of the
structural and behavioural aspects of the game. UML is standardised notation for
representing classes, components and their interactions in object-oriented and
entity-component-system designs.
The architecture shows how the game’s core modules work together to deliver gameplay
and their alignment with the user and system requirements.

Structural diagrams were created using PlantUML. This is a text based tool that uses source
descriptions to automatically produce class and component diagrams. This allowed the team
to iteratively improve architecture diagrams alongside implementation and ensure version
control by using GitHub. During early discussions, we also used Lucidchart to make small
component diagrams.

Behavioural aspects of the system were represented using UML sequence and state
machine diagrams. These tools were used to model message flows between key objects
during gameplay events. This includes player movement, collision handling and event
triggering. These diagrams help to support traceability and they show runtime behaviour by
connecting interactions with requirements.

All diagrams and interim versions were produced following an Agile/Scrum workflow. This
ensures that architectural models evolve alongside each sprint. Our approach was an
iterative, tool-supported approach, which allows the team to visualise dependencies and
communicate design choices while ensuring that the implemented architecture matched the
functional and non functional requirements.

Structural Architecture Diagrams:

The architecture follows a modular object-oriented design built on the LibGDX framework.
There is a clear separation between presentation, game logic and entity management. This
structure emphasises composition over inheritance and also utilises LibGDX’s screen-based
architecture for managing game states.

Layered Architecture:

This structure separates any concerns between presentation, game logic and framework
responsibilities, allowing changes to user interface elements without disrupting core
gameplay mechanics.

Layer Components Responsibilities

Presentation layer MenuScreen, GameScreen,
WinScreen, GameOverScreen,
TutorialScreen

Handles all user-facing elements such as screen
transitions and menu navigation. Converts inputs into
game actions

Game Logic layer Player, Dean, NPC, Locker,
BusTicket, GameTimer

Contains the core game rules and entity behaviours.
Manages player movement, enemy movement, item

interactions and game timing

Framework layer LibGDX Engine, SpriteBatch,
OrthographicCamera, TiledMap

Provides the foundational services such as rendering
and screen lifecycle control through LibGDX’s
framework

Class Relationships:

The core game entities follow a composition based design where GameScreen acts as the
central coordinator. Each entity encapsulates its own state and behaviour whilst
GameScreen manages their interactions and rendering order. The Player class provides
character movement and direction, the Dean class implements pursuit AI while the
interactive objects like Locker and BusTicker manage their own state transitions.

OOP UML Component Diagram
Our final component diagram represents the implemented architecture where GameScreen
serves as the central coordinator, directly managing all game entities and systems. The
architecture employs composition-based relationships rather than deep inheritance
hierarchies with each entity encapsulating its own state and behaviour while GameScreen
handles their interactions and rendering order. This design supports our core requirements:
FR_MOVEMENT through direct input handling, FR_ANTAGONIST via the Dean’s pursuit AI
and the three event types (FR_POSITIVE_EVENT, FR_NEGATIVE_EVENT,
FR_HIDDEN_EVENT) through specialised entity interactions. The final OOP component
diagram for the game’s architecture can be found on the website Architecture Appendix. |
Escape from University!

Behavioural Architecture Diagrams:

The behaviour architecture models the dynamic interactions between core components at
runtime. These sequence diagrams illustrate message flows in response to player actions
and automated system events using three primary gameplay interactions.

Use Case 1 - Player movement:
This sequence models how the system processes player movement and validates moves
within the maze environment. UML sequence diagram available on the website Architecture
Appendix. | Escape from University!

Actors and Components:

-​ Player: entity receiving movement commands
-​ GameScreen: central coordinator processing input and game state
-​ TiledMap: provides collision data through tile properties

Process Summary:
-​ When the player inputs movement, GameScreen.handleInput() processes the

command, checks collision via isCellBlocked() and updates the player position if their
move was valid. The camera follows the player and the rendering system updates
the display.

​
Use Case 2 - Dean’s Pursuit:

https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html
https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html
https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html
https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html

This sequence describes the AI logic controlling the Dean’s automatic movement through
the maze. The UML sequence diagram is available on the website Architecture Appendix. |
Escape from University!

Actors and Components:

-​ GameScreen: triggers entity updates each frame
-​ Dean: AI-controlled entity pursuing the player
-​ Player: target entity providing position data

Process Summary:
-​ For each frame, GameScreen updates the Dean which calculates direction towards

the player, checks for valid movement and updates the Dean’s position accordingly.
Collision detection occurs in GameScreen, triggering reset logic when the player is
caught by the Dean.

Use Case 3 Player Searching Objects:
This sequence outlines system behaviour when the player interacts with game objects. UML
sequence diagram available on the website Architecture Appendix. | Escape from University!

Actors and Components:

-​ Player: initiates interactions via the E key being pressed
-​ GameScreen: manages interaction flow and state changes
-​ Interactive Objects = BusTicker, Locker, NPC

Process Summary:
When the player presses E near interactive objects, GameScreen checks proximity and
triggers appropriate responses: collecting items, activating boosts or displaying dialogue.

Justification and Design Rationale:

Why Object-Oriented Architecture with LibGDX Screens?
We selected a pure object-oriented architecture built on LibGDX’s screen pattern because it
provided the optimal balance between structure and framework integration. The
screen-based architecture naturally fits the game’s state transitions (menu -> game ->
win/lose screens), while OOP design patterns made the codebase accessible to our team
and maintainable throughout development.

Why UML and PlantUML?
UML diagrams helped standardise team communication and ensured shared understanding
of system architecture. Using PlantUML allowed us to maintain diagrams in version
controlled text format which allowed for easy updates and traceability throughout
development. This workflow provided both clarity for design discussions as well as accurate
documentation of the implemented system.

Support for Maintainability, Scalability and Testability​
The screen-based OOP architecture improves maintainability by isolating different game
states into separate classes. Each screen manages its own lifecycle and resources,
preventing interference between game states. Scalability is supported through LibGDX’s
robust framework which handles asset management and rendering efficiently. Testability is

https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html
https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html
https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html

enhanced by well-defined class responsibilities with clear interfaces which allow for targeted
unit testing of individual game entities.

Trade-offs
The main trade-off in our architecture is the central role of GameScreen as a coordinator as
this creates some coupling between systems. However, this is offset by the clarity and
simplicity of having a clear central point for game logic. By keeping entities
well-encapsulated and using composition, we maintained flexibility while leveraging
LibGDX’s proven architectural patterns.

Evolution/Iteration Evidence:
Our architecture evolved significantly from the initial concepts to the final implementation. All
interim architectural versions, including early ECS diagrams, OOP transition plans and CRC
cards are available on our project website at Architecture Appendix. | Escape from
University!

Initial ECS Exploration -> Final OOP Implementation:
Initially, the team explored the idea of using an Entity-Component System (ECS) architecture
(available on the website Architecture Appendix. | Escape from University!) and created
component diagrams modelling entities as compositions of data components. However, after
evaluating team expertise and project scope, we transitioned to the more familiar, traditional
OOP approach using LibGDX’s established patterns. This decision prioritised development
efficiency and framework alignment over architectural innovation.

Screen Architecture Refinement:
Early designs used a monolithic game controller but we evolved to LibGDX’s screen-based
architecture after recognising the fact that it better fit our game state management. This
change improved separation of concerns and simplified state transitions.

Entity Management Evolution:
Initially, we planned separate manager classes for collision, input and physics but later
decided to consolidate these responsibilities into GameScreen after finding out that
LibGDX’s integrated approach reduced complexity without sacrificing any clarity.
Final OOP Architecture:
The final OOP component diagram for the game’s architecture can be found on the website
Architecture Appendix. | Escape from University!

CRC Cards:

Class Responsibilities Collaborators

GameScreen Process player input, update game entities, manage collisions,
handle screen transitions, coordinate rendering

Player, Dean, BusTicker,
Locker, GameTimer

Player Handle movement direction, maintain position state, manage
sprite rendering

GameScreen, SpriteBatch

https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html
https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html
https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html
https://zoey-ahmed-uni.github.io/jekyll/update/2025/11/01/uml.html

Dean Pursue the player using simple AI, update position each frame,
reset when catching the player

GameScreen, Player

NPC Display dialogue when the player interacts with it, manage
dialogue visibility, render NPC sprite and message

GameScreen, Player,
SpriteBatch

Locker Provide speed boost when interacted with, manager boost
duration timer, display interaction messagers, render locker sprite

GameScreen, Player,
SpriteBatch

BusTicket Manage collection state, render ticket in world when discoverable,
render UI icon when collected, handle ticket discovery logic

GameScreen, SpriteBatch,
OrthographicCamera

GameTimer Count down game time from 300 seconds (5 minutes), format time
display as mm:ss, update UI label display

GameScreen, uiStage,
Skin

MenuScreen Display main menu interface, handle menu navigation inputs,
transition to tutorial/game scenes, manage win screen graphics

MyGame, GameScreen,
SpriteBatch

WinScreen Display victory message and final score, show score breakdown
with penalties, handle return to menu navigation, render win
screen graphics

MyGame, GameScreen,
SpriteBatch

GameOverScreen Display game over message, handle menu return navigation,
render loss screen interface, manage screen resources

MyGame, GameScreen,
SpriteBatch

TutorialScreen Display tutorial instructions image, handle progression to main
game, manage tutorial resources, render tutorial information

MyGame, GameScreen,
SpriteBatch

MyGame Manage screen lifecycle and transitions, create initial application
context, coordinate between different screens, implement LibGDX
game interface

All Screen classes,
LibGDX framework

Traceability to Requirements:

Requirement ID Requirement Description Related Component(s) Architectural Rationale

FR_MOVEMENT The system shall allow
keyboard inputs to control
player movement

GameScreen.handleIinput()
, Player.setDirection(),
Player.getPosition(),
GameScreen.isCellBlocked(
)

Input processed in
GameScreen.handleInput()
which detects WASD keys,
sets player direction via
Player.setDirection(),
validates movement through
GameScreen.isCellBlocked()
before updating player
position

FR_ANTAGONIST The system shall include an
antagonist who follows the
player

Dean.update(),
Dean.getPosition(),
Dean.resetPosition(),Game
Screen.render(),
Player.getPosition(),
GameScreen.isCellBlocked(
)

Dean.update() calculates
pursuit direction each frame
using player position, moves
with speed = 0.7f, resets
player to start when caught
via Dean.resetToStart()

FR_POSITIVE_EVENT The system shall present a
positive event in which the
player finds a locker, opens
it and gains a speed boost
advantage

Locker.update(),
Locker.isBoostActive(),
GameScreen.handleInput()
movement speed logic

Locker.update() detects
player proximity and E key
presses, activates temporary
speed boost, GameScreen
doubles movement speed
when boost is active

FR_NEGATIVE_EVENT The system shall present a
negative event of the player
not being to get on the bus
without their bus pass

BusTicket.isCollected(),
GameScreen.canEndGame
, busInteractionArea
Rectangle

Bus boarding is blocked until
BusTicket.isCollected()
returns true, GameScreen
checks rectangle overlap
before allowing game
completion

FR_HIDDEN_EVENT The system shall contain a
hidden event of the player’s
bus pass being hidden in a
bush which, until triggered,
cannot be seen on the map

BusTicket.isCollected(),
NPC.showMessage,
BusTicket.render()
conditional rendering

Bus ticket initially hidden,
revealed via
BusTicket.discover() when
player gets close, NPC
provides hint through
dialogue message

FR_OFFLINE The system and all its
features shall not require
any connection to a network

All asset loading via local
files

All textures and maps are
loaded from local filesystem
without network
dependencies

FR_END_SCORE The system shall display
the user’s end score when
they complete or fail the
game

WinScreen,
GameOverScreen,
GameScreen.calculateFinal
Score(),
GameTimer.getTimeLeft()

Final score calculated from
remaining time minus
penalties, displayed when
player wins the game

FR_USER_TIMER The system shall display a
timer to the user user which
displays how long they have
been playing for

GameTimer, timerLabel,
uiStage

Countdown timer displays
remaining time in mm:ss
format through Scene2D UI
label

	Architecture
	
	
	
	
	
	
	
	Introduction and Tools:
	Structural Architecture Diagrams:
	Behavioural Architecture Diagrams:
	Justification and Design Rationale:
	Traceability to Requirements:
	
	
	
	
	
	

