

Testing
Cohort 2 Team 1
Ahmet Abdulhamit

Zoey Ahmed
Tomisin Bankole

Alanah Bell
Sasha Heer

Oscar Meadowcroft
Alric Thilak

Testing Approaches Used:

We combined automated unit testing, manual gameplay testing and system integration
testing to ensure comprehensive coverage of the game “Grep the Exit”.

1 - Unit Testing with JUnit 5:
We implemented JUnit 5 as our primary unit testing framework, focussing on core game
logic (inventory, collision, scoring), data models (Exam, Locker, NPC) and utility functions
(game state validations and mathematical calculations). JUnit 5 was appropriate as
LibGDX’s separation of rendering/graphics concerns from game logic allowed for isolated
testing of business components without graphical contexts.

2 - Automated Testing Suite:
We developed a comprehensive automated test suite covering:
Data Model Testing:

-​ Verification of game object states and behaviours
-​ Locker item distribution and opening logic
-​ Inventory slot management and item usage
-​ Exam question/answer storage and completion tracking
-​ NPC dialogue systems and interaction logic

Algorithm Testing:
-​ Mathematical verification of game mechanics
-​ Collision detection formulas and future position prediction
-​ Tiled map coordinate scaling (pixel to world units)
-​ Distance calculations for interaction ranges
-​ Movement pattern algorithms for entities

State Machine Testing:
-​ Validation of object lifecycles
-​ Locker state transition (closed -> opened)
-​ Exam completion persistence
-​ Guard movement pattern consistency
-​ Player respawn and checkpoint systems

This approach was appropriate as it validated core logic independently whilst avoiding
complex mocking of OpenGL/rendering.

3 - Manual Testing Protocol
We conducted systematic manual testing for UI/UX verification, screen transitions, graphics
rendering and real-time gameplay feel. These tests were important as certain game aspects
such as visual feedback, button hover effects and smooth animations require human
judgement that automated tests can’t provide. Manual testing validates the player
experience, ensuring the game meets its accessibility requirements and provides an
engaging, family-friendly experience as specified in UR_UX.

4 - Integration Testing
We performed integration testing focussing on screen navigation flows and map-transition
systems. This testing approach was crucial as it ensured connected components worked
together in a game with multiple interactive screens.

Test Results and Statistics:
Automated Testing:

Module Total Tests Passes Failed Coverage

InventorySystem 5 5 0 Total: 70%
Inventory class: 83%, InventoryItem class: 100%

CollisionChecker 5 5 0 Total: 75%
Maths logic: 100%, Core collision algorithms: 95%, Exception
handling: 100%

Exam object 5 5 0 Total: 65%
Business logic and rules: 95%, Answer validation algorithm:
100%, Gameplay mechanics: 90%

Locker object 5 5 0 Total: 75%
Special case: 100%, Business rules: 100%, State
management: 90%, Probability and distribution logic: 95%

NPC 3 3 0 Total: 45%
Interaction rules logic: 85%, Distance calculation: 100%

Guard 4 4 0 Total: 65%
Guard logic: 90%, Movement maths: 100%, Sprite selection:
100%

Player 5 5 0 Total: 75%
Player logic: 95%, Spawn/respawn system: 100%, Sprite
direction logic: 100%, Movement maths: 100%

Manual Testing:

Test ID Test Type Expected Result Result

T_WASD Input handling WASD movement should correspond to the right
direction

Pass

T_E_KEY Input handling E key is the interaction key for NPCs/exams/lockers Pass

T_NO_LAG Input handling T key teleports the player through portals to different
maps

Pass

T_T_KEY Input handling Verify there is no input lag or stuck keys Pass

T_EDGE_CASES Input handling Edge cases don’t cause errors or lag Pass

T_MAIN_FLOW Gameplay flow Gameplay flow follows common conventions Pass

T_DEATH_RESPAWN Gameplay flow Player being caught triggers a respawn Pass

T_LOCKER_FLOW Gameplay flow Locker interaction flow follows common conventions Pass

T_EXAM_FLOW Gameplay flow Exam interaction flow follows common conventions Pass

T_PICKUP_ITEM Inventory system Picking up an item from a locker adds the item to the
player’s inventory

Pass

T_USE_ITEM Inventory system Pressing 1,2 or 3 to use the corresponding inventory
slot’s item uses the item and applies the correct
effect to the player

Pass

T_S_CARD_TO_ESCAPE Inventory system Once the user has collected their student card they
are able to go back through the portal

Fail

T_TRY_USE_EMPTY Inventory system Trying to use an empty inventory slot doesn’t do
anything

Pass

T__FILL_INVENTORY Inventory system Inventory can be filled and items get added in the
first available slot

Pass

T_LEADERBOARD Leaderboard The leaderboard functions as expected Pass

T_PLAYER_HITS_WALLS Collision and
physics

A player can not collide with any walls when walking
in any given direction

Pass

T_PLAYER_COLLIDE_GUARD Collision and
physics

When a player collides with a guard they respawn at
the last spawnpoint

Pass

T_GUARD_PATHS Collision and
physics

Guards can travel horizontally and vertically Pass

T_GUARD_HITS_WALL Collision and
physics

Guards cannot collide with walls and when they meet
a wall they turn to go the other way

Pass

T_CORRECT_EXAM Collision and
physics

When a player completes an exam question correctly
they receive brief guard immunity

Pass

T_INCORRECT_EXAM Collision and
physics

When a player completes an exam question
incorrectly the guards speed up briefly

Pass

T_NO_GUARD_OVERLAP Collision and
physics

Guards in a close area do not overlap and stay to
their given paths

Pass

T_LOCKER8_ITEM Collision and
physics

Locker 8 always contains a student card Pass

T_OPEN_10_LOCKERS Probability Item probability of lockers spawning with different
items functions as expected

Pass

T_RANDOM_LOCKER_ITEM Randomness For every game the lockers spawn with random items
each time

Pass

T_EXAM_SYSTEM State machine The exam interaction functions fully as expected Pass

T_NPC_DIALOGUE State machine The NPC interaction functions fully as expected Pass

T_WALK_OFF_MAP Boundary and
edge case

The player cannot walk off either of the two maps Pass

T_VALID_RESPAWN_POINTS Boundary and All respawn points are in a valid map location that is Pass

edge case on the map and accessible

T_MAX_INVENTORY Boundary and
edge case

No additional items can be added to a full inventory Pass

T_ALL_GUARDS_ACTIVE Performance Multiple guards can be active at the same time Pass

T_ALL_OBJECTS_VISIBLE Performance Picking up items has a visual display in the player’s
inventory

Pass

T_EVENT_COUNTER_UPDATE UI/UX When interacting with events the correct
corresponding event tracker is updated

Pass

T_SCORES_DISPLAYED UI/UX The win screen correctly displays the players score
with any bonus points from achievements

Pass

T_BUTTONS_ALL_WORK UI/UX All menu buttons work Fail

T_NO_MAP_LOADING_LAG UI/UX Changing map renders correctly and has no lag Pass

T_SCREEN_LOADING UI/UX All screens have clear visuals Pass

Automated Tests Report: Tests | Grep The Exit under “Test Results” or directly at Test results
- Test Summary under “io.maze”
Manual Test Descriptions: Tests | Grep The Exit

Failed Tests Analysis:

Manual Test Failures:​
T_S_CARD_TO_ESCAPE

-​ Issue 1: Once the player has obtained the student card and the item has been added
to the player’s inventory, if the player uses that inventory item before exiting the
hidden room the player is then unable to exit the room as they no longer have their
student card - leaving the player trapped indefinitely

-​ Cause: the Inventory.useItem() destroys the student card once it is used but
hasStudentCard() checks if the student card is currently in the inventory

-​ Fix: modify the student card in Inventory.useItem() to be non-consumable
-​ Issue 2: If the player’s inventory is full, when the player opens special locker8

containing the student card, no student card is added to the player’s inventory and
the game does not register that the card has been found meaning the player cannot
escape from the hidden room - again leaving the player trapped

-​ Cause: Inventory.addItem() returns false if the player’s inventory is full but the
student card is still removed from the locker and locker.open() is marked as opened,
meaning its contents are cleared

-​ Fix: alter GameScreen to always accept a found student card by having a designated
additional inventory slot just for the student card to go in

T_BUTTONS_ALL_WORK
-​ Issue: no settings screen has been implemented so the settings button can be

pressed however no result occurs from the button press
-​ Cause: no additional features requiring a settings menu were implemented into the

game therefore there was no need for a settings menu
-​ Fix: delete settings button from MainMenu or implement features requiring settings

https://zoey-ahmed-uni.github.io/GrepTheExit/tests.html
https://alanahbell.github.io/test-report-game/
https://alanahbell.github.io/test-report-game/
https://zoey-ahmed-uni.github.io/GrepTheExit/tests.html

	
	Testing Approaches Used:
	Manual Testing:
	Failed Tests Analysis:

