Testing
Cohort 2 Team 1
Ahmet Abdulhamit
Zoey Ahmed
Tomisin Bankole
Alanah Bell
Sasha Heer
Oscar Meadowcroft
Alric Thilak

Testing Approaches Used:

We combined automated unit testing, manual gameplay testing and system integration
testing to ensure comprehensive coverage of the game “Grep the Exit”.

1 - Unit Testing with JUnit 5:
We implemented JUnit 5 as our primary unit testing framework, focussing on core game

logic (inventory, collision, scoring), data models (Exam, Locker, NPC) and utility functions
(game state validations and mathematical calculations). JUnit 5 was appropriate as
LibGDX’s separation of rendering/graphics concerns from game logic allowed for isolated
testing of business components without graphical contexts.

2 - Automated Testing Suite:
We developed a comprehensive automated test suite covering:

Data Model Testing:
- Verification of game object states and behaviours
- Locker item distribution and opening logic
Inventory slot management and item usage
- Exam question/answer storage and completion tracking
- NPC dialogue systems and interaction logic
Algorithm Testing:
- Mathematical verification of game mechanics
Collision detection formulas and future position prediction
Tiled map coordinate scaling (pixel to world units)
Distance calculations for interaction ranges
- Movement pattern algorithms for entities
State Machine Testing:
- Validation of object lifecycles
Locker state transition (closed -> opened)
Exam completion persistence
- Guard movement pattern consistency
Player respawn and checkpoint systems
This approach was appropriate as it validated core logic independently whilst avoiding
complex mocking of OpenGL/rendering.

3 - Manual Testing Protocol

We conducted systematic manual testing for Ul/UX verification, screen transitions, graphics
rendering and real-time gameplay feel. These tests were important as certain game aspects
such as visual feedback, button hover effects and smooth animations require human
judgement that automated tests can’t provide. Manual testing validates the player
experience, ensuring the game meets its accessibility requirements and provides an
engaging, family-friendly experience as specified in UR_UX.

4 - Integration Testing
We performed integration testing focussing on screen navigation flows and map-transition

systems. This testing approach was crucial as it ensured connected components worked
together in a game with multiple interactive screens.

Test Results and Statistics:

Automated Testing:

Module Total Tests | Passes | Failed Coverage
InventorySystem | 5 5 0 Total: 70%
Inventory class: 83%, Inventoryltem class: 100%
CollisionChecker | 5 5 0 Total: 75%
Maths logic: 100%, Core collision algorithms: 95%, Exception
handling: 100%
Exam object 5 5 0 Total: 65%
Business logic and rules: 95%, Answer validation algorithm:
100%, Gameplay mechanics: 90%
Locker object 5 5 0 Total: 75%
Special case: 100%, Business rules: 100%, State
management: 90%, Probability and distribution logic: 95%
NPC 3 3 0 Total: 45%
Interaction rules logic: 85%, Distance calculation: 100%
Guard 4 4 0 Total: 65%
Guard logic: 90%, Movement maths: 100%, Sprite selection:
100%
Player 5 5 0 Total: 75%
Player logic: 95%, Spawn/respawn system: 100%, Sprite
direction logic: 100%, Movement maths: 100%
Manual Testing:
Test ID Test Type Expected Result Result
T _WASD Input handling WASD movement should correspond to the right Pass
direction
T_E_KEY Input handling E key is the interaction key for NPCs/exams/lockers | Pass
T _NO_LAG Input handling T key teleports the player through portals to different | Pass
maps
T T KEY Input handling Verify there is no input lag or stuck keys Pass
T _EDGE_CASES Input handling Edge cases don’t cause errors or lag Pass
T_MAIN_FLOW Gameplay flow Gameplay flow follows common conventions Pass
T _DEATH_RESPAWN Gameplay flow Player being caught triggers a respawn Pass

T_LOCKER_FLOW

Gameplay flow

Locker interaction flow follows common conventions Pass

T_EXAM_FLOW

Gameplay flow

Exam interaction flow follows common conventions Pass

T_PICKUP_ITEM Inventory system | Picking up an item from a locker adds the item to the | Pass
player’s inventory
T _USE_ITEM Inventory system | Pressing 1,2 or 3 to use the corresponding inventory | Pass
slot’s item uses the item and applies the correct
effect to the player
T S CARD _TO ESCAPE Inventory system | Once the user has collected their student card they Fail
are able to go back through the portal
T TRY_USE_EMPTY Inventory system | Trying to use an empty inventory slot doesn’t do Pass
anything
T__FILL_INVENTORY Inventory system | Inventory can be filled and items get added in the Pass
first available slot
T_LEADERBOARD Leaderboard The leaderboard functions as expected Pass
T PLAYER_HITS WALLS Collision and A player can not collide with any walls when walking | Pass
physics in any given direction
T_PLAYER_COLLIDE_GUARD | Collision and When a player collides with a guard they respawn at | Pass
physics the last spawnpoint
T_GUARD_PATHS Collision and Guards can travel horizontally and vertically Pass
physics
T _GUARD_HITS WALL Collision and Guards cannot collide with walls and when they meet | Pass
physics a wall they turn to go the other way
T _CORRECT_EXAM Collision and When a player completes an exam question correctly | Pass
physics they receive brief guard immunity
T_INCORRECT_EXAM Collision and When a player completes an exam question Pass
physics incorrectly the guards speed up briefly
T_NO_GUARD_OVERLAP Collision and Guards in a close area do not overlap and stay to Pass
physics their given paths
T LOCKERS8 ITEM Collision and Locker 8 always contains a student card Pass
physics
T_OPEN_10_LOCKERS Probability Item probability of lockers spawning with different Pass
items functions as expected
T_RANDOM_LOCKER_ITEM Randomness For every game the lockers spawn with random items | Pass
each time
T _EXAM_SYSTEM State machine The exam interaction functions fully as expected Pass
T_NPC_DIALOGUE State machine The NPC interaction functions fully as expected Pass
T WALK_OFF_MAP Boundary and The player cannot walk off either of the two maps Pass
edge case
T_VALID_RESPAWN_POINTS Boundary and All respawn points are in a valid map location thatis | Pass

edge case on the map and accessible
T _MAX_INVENTORY Boundary and No additional items can be added to a full inventory Pass
edge case
T ALL GUARDS ACTIVE Performance Multiple guards can be active at the same time Pass
T _ALL OBJECTS_VISIBLE Performance Picking up items has a visual display in the player’s Pass
inventory
T _EVENT_COUNTER_UPDATE | Ul/UX When interacting with events the correct Pass
corresponding event tracker is updated
T SCORES_DISPLAYED Ul/uXx The win screen correctly displays the players score Pass
with any bonus points from achievements
T _BUTTONS_ALL WORK Ul/UXx All menu buttons work Fail
T _NO_MAP_LOADING LAG Ul/UX Changing map renders correctly and has no lag Pass
T_SCREEN_LOADING Ul/uUXx All screens have clear visuals Pass

Automated Tests Report: Tests | Grep The Exit under “Test Results” or directly at Test results

- Test Summary under “io.maze”

Manual Test Descriptions: Tests | Grep The Exit

Failed Tests Analysis:

Manual Test Failures:
T S CARD_TO ESCAPE

- Issue 1: Once the player has obtained the student card and the item has been added
to the player’s inventory, if the player uses that inventory item before exiting the
hidden room the player is then unable to exit the room as they no longer have their
student card - leaving the player trapped indefinitely

- Cause: the Inventory.useltem() destroys the student card once it is used but
hasStudentCard() checks if the student card is currently in the inventory

- Fix: modify the student card in Inventory.useltem() to be non-consumable

- Issue 2: If the player’s inventory is full, when the player opens special locker8
containing the student card, no student card is added to the player’s inventory and
the game does not register that the card has been found meaning the player cannot
escape from the hidden room - again leaving the player trapped

- Cause: Inventory.additem() returns false if the player’s inventory is full but the
student card is still removed from the locker and locker.open() is marked as opened,

meaning its contents are cleared

- Fix: alter GameScreen to always accept a found student card by having a designated
additional inventory slot just for the student card to go in

T_BUTTONS_ALL_WORK

- Issue: no settings screen has been implemented so the settings button can be
pressed however no result occurs from the button press

- Cause: no additional features requiring a settings menu were implemented into the
game therefore there was no need for a settings menu

- Fix: delete settings button from MainMenu or implement features requiring settings

https://zoey-ahmed-uni.github.io/GrepTheExit/tests.html
https://alanahbell.github.io/test-report-game/
https://alanahbell.github.io/test-report-game/
https://zoey-ahmed-uni.github.io/GrepTheExit/tests.html

	
	Testing Approaches Used:
	Manual Testing:
	Failed Tests Analysis:

