
Method Selection and Planning
Question 1

For the programming language, our customer has asked for the project to be written in Java
17, ensuring the code is compatible and easy for the next group to take over. As a year
group, we have already learned Java, so the next group is familiar with it, ensuring they can
continue development smoothly. This was a requirement as specified in both the customer
meeting and the project brief.

We have decided to use Whatsapp for group communication. This works for us as everyone
already had accounts, and we were all familiar with the platform. We made a community,
with different channels for each subgroup (each person was in multiple subgroups). A
structure like this allows for clear communication and focus, without messages getting lost in
one larger group chat. It also made it more simple to have subgroup meetings as we could
start a Whatsapp call involving only the people required. We also considered using Discord,
but not all the team members were familiar with that and we thought they had similar
functionality.

For our document editing, we are using Google Docs and Google Drive. We made a shared
drive, with different folders for organisational clarity. This is cloud-based, meaning we can
access our work on both the lab computers and our personal computers, which is important
for independent work and autosaving - no need to backup work to protect against data loss.
Additionally, as it is cloud-based, it supports simultaneous editing, meaning we can all
contribute at the same time. Google Docs also has a version history feature, which we can
use to track edits, keep records of progress, and maintain accountability for contributions.
Commenting and suggestion features are also easily accessible, supporting peer review and
allowing us to refine our writing as a group. The platform can easily integrate diagrams, such
as those made with PlantUML, as shown in this report.

We had considered alternatives, such as Microsoft Word, which is also cloud-based when
used with OneDrive. We have found in the past that OneDrive takes a while to sync changes
in comparison to Docs, which is not optimal for this variety of group work. LaTeX was
another consideration, however everyone was already familiar with Google Docs, and it
requires less technical knowledge to use. Finally, we looked at Markdown-based editors,
however these did not have built-in commenting, and they appeared to be less intuitive for
project documentation than Google Docs.

The final collaboration tool we are using is GitHub. As with Google Docs. This is
cloud-based, so we are able to work on it regardless of which device we are using. This
version control platform provides a clear history of commits, allowing us to easily track code
changes and revert to previous versions. As we are university students, occasional coding
errors may occur, and this platform means we can simply restore the last working version or
create an issue to track the bug. Additionally, multiple team members are able to work
simultaneously using branches, and it provides clear information of merge conflicts. Commits
are linked to contributors, so it helps to maintain accountability within the team. We looked at
alternatives such as GitLab and BitBucket, but decided on GitHub as it is one of the most
commonly used version control systems, so many of us have already used it, and gaining
experience in it is advantageous for future projects.

For our game engine, we selected LibGDX because it offered an effective balance between
performance, flexibility, and control. As a lightweight, code-based framework rather than a
visual editor, it allowed us to directly implement and manage core game systems such as
input handling and asset management. The cross-platform capabilities of LibGDX were
another major advantage, enabling us to build and test the same codebase across platforms
such as Windows, Mac, and Android, allowing us all to contribute and work effectively. We
also found the LibGDX API to be well-structured and consistent, making it straightforward to
access features such as graphics and audio in a unified way. Its clear design helped
streamline development and reduce platform-specific issues. Furthermore, because LibGDX
is open source and built in Java, it aligned well with our existing programming knowledge
and allowed for easy integration of additional libraries when needed.

We considered using Unity, however our customer requested a 2D game, and Unity is
generally better for large-scale 3D projects. Another common Java game engine is
jMonkeyEngine, however this is also more focused on 3D development. We also explored
LWJGL, which is fast due to its low-level implementation, but this is difficult to develop with
and requires a significant initial time investment to learn.

The IDE we decided to use is IntelliJ as it is built specifically for Java development. It utilises
powerful tools, such as codebase-wide refactoring, advanced Java syntax highlighting, and
robust debugging tools and error detection. It also contains built-in tools for both Gradle,
which is the build automation tool used by LibGDX (our game engine), and Git, ensuring a
seamless version control experience.

Alternatives considered include VS code and Eclipse. By using IntelliJ, we avoid the need for
everyone to install multiple VS code extensions to get the same experience across the
implementation team. Additionally, IntelliJ provides an out-of-the-box experience, unlike VS
code which would take time to install the correct plugins. With regard to Eclipse, it is
powerful but hard to learn, and as most team members are already familiar with IntelliJ, it
would save valuable time to use that instead.

To create our map, we decided to use Tiled, a flexible tile-based level editor. We selected
Tiled for multiple reasons, the main being its excellent compatibility with LibGDX, its large
amount of built-in functions, and comprehensive documentation make it super easy to use.
The simplicity and ease of learning were super important due to our project's time
restrictions. Using Tiled allowed us to quickly develop a map using our tile sprites without
any learning curve.

For our game’s assets, we initially used Sora AI to generate them. While sora produced
some good images, inconsistencies across the assets made them look weird and unsuitable
to be used. Given our time constraints, we were unable to create our own assets. We finally
decided to use a free CC0 asset pack. This proved to be the best solution for a few reasons.
The CC0 asset pack license allowed us to use the assets in production which meant no legal
restrictions, and the customer had no requirements for the assets visual style. Additionally,
we could import the sprites directly into tiled and start developing a map immediately.

Question 2
Key stakeholders for this project include the team members and our customer, Robert
Jongeling. We had one meeting with our customer at the beginning of the semester, and
have the ability to schedule follow-up meetings with him, or ask him short questions in our
practical session every Wednesday.

Our team’s approach to team organisation involves a more flat hierarchy, with no outright
leader. With small groups (such as ours), this approach works well because it promotes
collaboration and open communication, encouraging everyone to contribute. It also allows
for faster problem solving, as everyone has the authority to make important decisions.
Through valuing every person equally, our team is able to work more cohesively and create
a product which reflects the collective strengths of the team. We also assigned a leader to
each of the work packages, so we could keep track of progress.

While the flat structure encourages collaboration, our team also recognised the importance
of clear organisation and equal participation. Therefore, to maintain accountability and
ensure progress is still being made, we decided to make subteams based on the
deliverables in the assessment. This allows different members of the team to focus on a
smaller number of tasks, resulting in clearer task allocation and deadline monitoring.
Decisions affecting the whole project are made collaboratively within the team and each
subteam resolves their own internal questions or choices, improving efficiency. The
subteams allow us to monitor each member’s individual progress, providing support where
required. As the project progressed, we changed who was working in which subteam, but
the initial groupings can be seen below:

To co-ordinate between subteams and ensure clear communication, we follow an Agile
Scrum approach during our weekly meetings. During these meetings, we discuss which
tasks each member has completed, identify any blockers, and assign roles for the following
week. This enables everyone to bring up issues and focus on accountability in a structured
way. We also fill in a logbook after each meeting, to keep a record of what we discussed and
achieved.

Website Subteam Kaleb and Max handled the development and maintenance of the
project’s website.

Requirements Subteam Kaleb, Alex, Maddie, and Fatima handled the requirements
gathering, analysis and documentation.

Architecture/Diagrammer
Subteam

Cory, Max, Kaleb, Alex, and Maddie handled the system architecture
design and created technical diagrams.

Method Selector/Planner
Subteam

Cory, Sarina, and Fatima handled the choice of development
methodologies and project planning.

Implementation Subteam Cory, Max, Alex, Sarina, and Maddie handled the development,
coding and testing of the game and subsystems.

Risk Assessor Subteam Sarina and Fatima handled the identification, analysis and
documentation of the project's risks.

Question 3

ID Title Description Dates Dep. Contributors

WP1 Requirement
Elicitation

Deciding requirements for the
project.

 Leader: Maddie

T1.1 Create Interview
Script

Write questions for the interview
and complete a practice.

29/09/2025 -
08/10/2025

 Everyone

T1.2 Conduct Interview Complete customer interview.
Record it and write notes.

08/10/2025 T1.1 Everyone

T1.3 Requirements
Specification

Create a document listing the
requirements.

09/10/2025 -
16/10/2025

T1.2 Kaleb, Alex,
Maddie, Cory

D1.1 Requirements
Document - Final
Version

Lists the requirements for the
project.
Visibility: Customer

16/10/2025 T1.3

WP2 Planning Research, plan and schedule
the project.

 Leader: Sarina

T2.1 Research Tools Research collaboration tools
and game engines.

29/09/2025 -
05/10/2025

 Everyone

T2.2 Assign Roles Assign subteams and tasks
within those.

06/10/2025 -
12/10/2025

 Everyone

T2.3 Create Planning
Document

Create a document listing the
plan.

13/10/2025 -
02/11/2025

T2.1,
T2.2

Sarina, Kaleb,
Maddie, Cory

D2.1 Planning
Document - Final
Version

Lists the plan for the project.
Visibility: Customer

02/11/2025 T2.3

WP3 Risk Assessment Assess and keep records of
possible risks.

 Leader: Fatima

T3.1 Create Risk
Document

Create a document listing the
initial risks.

29/09/2025 -
14/10/2025

 Fatima

T3.2 Add New Risks Add in new risks as we come
across them.

16/10/2025 -
29/10/2025

T3.1 Fatima, Maddie,
Sarina

D3.1 Risk Document -
Final Version

Lists the possible risks for the
project.
Visibility: Customer

29/10/2025 T3.2

WP4 Design Create architecture diagrams
and the website.

 Website: Max
Arch.: Kaleb

T4.1 Build Website Create a basic website. 22/09/2025 -
28/09/2025

 Kaleb, Max

T4.2 Add Final Links to
Website

Add links for documents and
diagrams to the website.

08/11/2025 -
10/11/2025

T4.1 Kaleb

T4.3 Initial Class
Diagrams

Create initial class diagrams for
architecture.

13/10/2025 -
16/10/2025

T1.2 Cory, Kaleb

T4.4 Architecture
Changes

Architecture changes based on
implementation

17/10/2025 -
26/10/2025

T4.3 Kaleb, Maddie,
Alex

T4.5 Create
Architecture
Document

Create a document listing the
architecture, including the class
diagrams

27/10/2025 -
07/11/2025

T4.4 Kaleb, Maddie,
Cory

D4.1 Website - Final
Version

A website for our game,
complete with links.
Visibility: Customer

10/11/2025 T4.2

D4.2 Architecture
Document - Final
Version

A document listing the
architecture and class diagrams
Visibility: Customer

07/11/2025 T4.5

WP5 Implementation Creating and coding the game Leader: Alex

T5.1 Player Movement Code focused on player
movement

17/10/2025 -
23/10/2025

T4.3 Alex, Max, Kaleb

T5.2 Environment
Creation

Creation of the maze, and
implementation into the game

17/10/2025 -
23/10/2025

T4.3 Fatima, Kaleb

T5.3 Object and Entity
Logic

Code focused on object and
entity logic

17/10/2025 -
23/10/2025

T4.3 Alex, Max, Kaleb

T5.4 Player -
Environment
Interaction

Code focused on player and
environment interaction

24/10/2025 -
07/11/2025

T5.1,
T5.2,
T5.3

Alex, Kaleb

T5.5 Menu Creation Creating screens, such as
menus

17/10/2025 -
07/11/2025

 Max

T5.6 Create
Implementation
Document

Create a document, listing the
processes and tools used for
implementation

08/11/2025 -
10/11/2025

T5.4,
T5.5

Kaleb

D5.1 Game and Code -
Final Version

A working game, created to the
specification provided.
Visibility: Customer

07/11/2025 T5.4,
T5.5

D5.2 Implementation
Document - Final
Version

A document listing the
resources and licences used to
make the game
Visibility: Customer

10/11/2025 T5.6

Above is a table showing the work packages and tasks of the project, along with which members contributed to
each task. A work breakdown structure (WBS) can also be found in Appendix C on the website, showing a
more visual representation of the table above. Each work package was assigned a different leader, who was
responsible for the progress of all the tasks within their package to distribute the leadership, and to maintain
accountability within the subteams. For each task, we allocated members based on what needed to be done
that week, and how much work everyone was already doing. The most vital tasks were allocated multiple
people to avoid a low bus factor, optimally assigning three team members per task. To micro-plan what tasks
were being completed each week, we filled in a logbook where we specified the activities and members
involved.

Our initial schedule changed over time. A visual representation of this can be found using the Gantt charts in
Appendix B on our website. We initially anticipated we would have more time for the implementation section of
the project, however, we had dependencies on the interview (T1.2) for the architecture (T4.3), which we
needed to complete before starting the implementation. This delayed the start of our implementation, resulting
in less time for the written document. Despite this, we managed to assign more people to the implementation
tasks, to maintain our final deadline. Both the WBS and Gantt charts were made using PlantUML.

