Change Report
Cohort 2 Team 1

Ahmet Abdulhamit
Zoey Ahmed
Tomisin Bankole
Alanah Bell
Sasha Heer
Oscar Meadowcroft
Alric Thilak

Change Process + Tools

To plan the changes required for “Grep the Exit”, our team first held a group discussion to
determine a high-level approach to the new requirements. This included identifying
significant deliverables such as new events, player achievements and creating a functioning
leaderboard. After this overview concluded and a high-level plan was agreed upon, we used
new tools to break these tasks down into individual changes, making it easier to assign and
track work.

To track and manage these changes, we used GitHub’s issue tracker. Issue trackers provide
a structured way to manage tasks within a codebase, allowing each team member to create
issues. Each issue contained a title and a description specifying a feature request or a bug
report with exact steps given to reproduce the bug. This provided the team a single central
location for all change requests and bug reports, avoiding scattered messages and
documents. Related issues could also be linked together using custom labels which helped
the team identify dependencies and determine task priority.

GitHub also enabled effective coordination of task ownership. Each issue could be tagged
according to the type of task it involved, such as new positive or negative events, artwork or
bug fixes. This allowed the programmers to filter issues according to their assigned roles and
focus on tasks in areas of the code they were most familiar with. After triaging, issues were
then assigned to specific team members, making it clear who was responsible for each
change. This approach prevented duplicated work which was an issue flagged by the team
in our reflection of Assessment 1 when multiple coders unknowingly worked on the same
large task.

For both communication and planning we used Discord. Unlike a single group chat on a
platform such as Whatsapp, Discord allowed us to create dedicated channels for different
topics and deliverables such as architecture discussion, Cl changes and general deliverable
document communication. This structure improved team coordination and made discussion
more efficient than with previous methods like a Whatsapp chat.

Overall, by combining high-level planning, GitHub issue tracking and structured
communication through Discord, the team was able to systematically plan, implement and
review changes made. This approach ensured that all work was clearly documented,
responsibilities were assigned, dependencies were managed and the team could collaborate
efficiently throughout the process.

Requirements Changes

Following the handover of Assessment 1 deliverables from another team, the requirements
were reviewed against the updated exam brief. Several gaps were identified where the
original requirements no longer fully reflected the required gameplay scope, mechanics and
constraints. As a result, new user and functional requirements were introduced and some
existing requirements were refined to improve clarity, completeness and alignment with the
updated brief. All changes were documented using structured tables to help preserve

traceability with the original deliverables and newly added requirements. The following
changed requirements combined with the new requirements and the previous team’s
unchanged requirements form the full set of requirements for Assessment 2.

Changed Requirements:

ID Previous Description New Description Justification for Change
UR_MAP The user shall be able to The user shall be able to explore Updated to support the addition
explore a single large maze the large maze main map of a new hidden-room map
in the map alongside a smaller maze in the
hidden room map
UR_PASSAGE | The user shall be able to skip | The user shall be able to teleport Replaces an undefined
parts of the maze by to a hidden room via a portal which | mechanic with a clearly
accessing hidden passages remains hidden whilst in the main specified map traversal method
maze map of portals
FR_PROMPT [The game shall be able to Interaction prompts are displayed Updated to improve Ul clarity
display boxes at the bottom near the player’s inventory at and consistency with common
of the screen displaying text bottom centre of the screen interface conventions whilst
when an interaction begins making space for the player’s
inventory
FR_BUS The user shall have catch a The user shall have to catch the Better reflects narrative closure
bus to unlock the next point bus in order to escape from the and end-game progression
of the game maze and complete the game
UR_EXAM The user shall have to Exams open an interaction screen | Expanded to clearly define
overcome an exam to unlock | where the user must answer an exam interaction and
the next point of the game exam question to continue, a consequences
correct answer gives a buff whilst
an incorrect answer gives a debuff
to the player
New Requirements:
ID Description Justification for Addition UR Links
UR_LOCKER The user shall be able to interact | Items within the lockers are a n/a
with lockers around the map hidden event and the lockers
which will add items to the support item collection
player’s inventory
UR_HIDDEN_MAP The user shall be able to explore | The hidden map is one of the n/a
a hidden-room maze containing a | hidden events specified in the
locker, the Dean and an exit brief and it also adds
portal progression depth
UR_INVENTORY The user shall have a 3 slot item | Necessary to manage n/a
inventory mapped to keys 1-3 collectible items and choose
when to apply their effects
UR_PORTAL The user shall be able to teleport | Enable travel between the two | n/a
between the two maps via a maps
portal by using the T key

UR_LOCKED_DOOR The user shall only be able to This feature introduces n/a
pass through the locked door structured progression to the
after inputting the correct 3-digit game as well as puzzle-solving
keycode on the door’s keypad
UR_EVENTS The game shall offer several Added to align with the n/a
different events to interact with, updated exam brief’s
the event types shall be hidden, requirements for varied
negative and positive event-driven gameplay
FR_APPLE Lockers give an apple 50% of the | One of the positive events UR_SPEED
time, apples give temporary which helps the player UR_LOCKER
increased player speed progress around the maze UR_INVENTORY
FR_COOKIE Lockers give a cookie 30% of the | One of the positive events UR_LOCKER

time, cookies add 15 seconds to
the player’s clock

which supports the time-based
game mechanics

UR_INVENTORY

FR_ROTTEN_APPLE

Lockers give a rotten apple 20%
of the time, rotten apples
temporarily slow the player

One of the negative events to
help balance all the buffs the
player is able to receive

UR_LOCKER
UR_INVENTORY

FR_DIFF_LOCKER

The hidden room locker shall
always contain a student card

Ensures progression from the
hidden room map

UR_LOCKER
UR_INVENTORY

FR_FULL_INVENTORY

Items cannot be collected if the
inventory is already full

Prevents item hoarding and
enforces strategic decisions

UR_LOCKER
UR_INVENTORY

FR_STUDENT_CARD

A student card allows
teleportation back to the main
map from the hidden room map

Makes progression rely on
finding an item and ensures
the player has to actively think
to continue playing

UR_LOCKER
UR_HIDDEN_MAP
UR_INVENTORY
UR_PORTAL

FR_DEAN

The Dean traps the player in the
hidden room map until the player
finds their student card

Creates a small antagonist
which helps the narrative and
counts as a negative event

UR_HIDDEN_MAP

FR_KEYPAD_SCREEN

A keypad Ul allows the player to
input codes, clear inputs and
gives feedback on correctness

Required to support the locked
door interaction as the right
code opens the door

UR_LOCKED_DOOR

FR_FIND_KEYCODE

Each NPC provides one digit of
the keypad door code

Encourages the player to
explore the map and interact
with NPCs

UR_LOCKED_DOOR

FR_EXAM_NOT_HARD | To help ensure UR_FAMILY the Ensures compliance with UR_FAMILY
exam questions shall be general | accessibility requirements by UR_EXAM
knowledge and not too hard making sure the exams are

accessible to all ages

FR_EXAM_CORRECT | Correct exam answers grant the Rewards the player’s skilland | UR_EXAM

player temporary guard immunity | helps engage the player with
the game, positive event
FR_EXAM_INCORREC | Incorrect exam answers Adds a consequence based on | UR_EXAM

temporarily speed up the guards

the player’s skill level and
counts as a negative event

FR_POSITIVE_EVENT
S

The player shall be able to
encounter 3 positive events, each
event shall benefit the player in
some way

Added to align with the
updated exam brief’s

requirements for varied
event-driven gameplay

UR_EVENTS

FR_NEGATIVE_EVENT
S

The player shall be able to
encounter 5 negative events,
each event shall hinder the player
from progressing

Added to align with the
updated exam brief’s

requirements for varied
event-driven gameplay

UR_EVENTS

FR_HIDDEN_EVENTS

The player shall be able to
encounter 3 hidden events, each
hidden until triggered

Added to align with the
updated exam brief’s

requirements for varied
event-driven gameplay

UR_EVENTS

New requirements were added to reflect mechanics and constraints specified in the updated
exam brief that were not present in the original team’s Assessment 1 deliverables. These
additions, along with refinements to existing requirements, were necessary to fully specify
newly required gameplay systems such as inventory management, hidden maps, full exam
interaction, event-driven mechanics, etc. The revised requirements improve clarity, reduce
ambiguity and ensure full alignment with the updated brief while maintaining traceability with
the original documentation.

Architecture Changes

Our architecture changes were made to fulfil our new set of requirements, while building off
the architecture of the original team’s work. The original architecture was based on the
Model-View-Controller pattern, which our new architecture changes adhered to. We refined

the architecture through a set of linked structural decisions aimed at improving the

modularity, clarity of responsibility and overall maintainability of the codebase, whilst
fostering a more immersive and interactive gameplay experience for the player. In particular,
our implementation steered away from handling all interactions inline inside the main
gameplay loop, by introducing modal, screen-based workflows for Ul-heavy features,
alongside a clearer runtime mechanism for world transitions through portals and dynamic
map switching. Additionally, we expanded the domain model and improved its structure
through additional specialised interactable object types, a more interactive exam model,
mediated by dedicated Ul screens. Furthermore, the introduction of a persistent inventory
subsystem that supports state-based progression and gating. While our project remains
MVC inspired in its use of models (entities, objects, state) and screens (KeyPadScreen,
GameOverScreen, etc), our architecture strengthens separation of concerns by distributing

input ownership across specialised interaction screens, resulting in a more layered,

screen-driven game architecture. All architecture diagrams and CRC cards can be found at
Previous Deliverables | Grep The Exit under ‘Graphs’ and ‘CRC Cards’

https://zoey-ahmed-uni.github.io/GrepTheExit/deliverables.html

Title Original Change Implemented Justification for Requirements
Change Traceback

Improved There were New types of game flow Changes improved UR_PORTAL

Game Flow | implicitly fewer transitions: state management by | UR_HIDDEN_MAP

and State transition types Pausing and resuming the making flow transitions | UR_MAP

Manageme | and less game via ‘PauseScreen’, explicit and supporting | UR_EXAM

nt structured state A reward/punishment flow for | richer game FR_EXAM_CORRECT
flow handled, exams. progression and FR_EXAM_INCORRECT
primarily through consequences.
GameScreen.

Modal Most interactions | We moved Ul-heavy Changes improved UR_EXAM

Interaction | were handled interactions to modal screens | separation of concerns | FR_KEYPAD SCREEN

Architecture

inside
GameScreen
while the mainloop
was running. So,
the gameplay loop
handled
responsibilities
like, world
simulation, input
processing and Ul
feedback.

like:
- ExamQuestionScreen
- KeypadScreen
- TutorialScreen
- WinScreen

because those screens
focus on input and U,
so GameScreen can
focus on world
simulation.

Also increases
modularity due to
higher cohesion per
screen, thus,
improving
maintainability of code.

UR_LOCKED_DOOR
FR_PROMPT

Domain There was no We implemented NPCs as a Improves semantic FR_FIND KEYCODE
Modelling of | dedicated NPC subclass of Object, accuracy in our UR_EVENTS
NPCs implementation. purposefully reflecting their domain model by UR_MAP
The moving nature as stationary separating moving UR_HIDDEN_MAP
character model interactables. agents from static
was represented interactables. So, NPC
through entity avoids inheriting
subclasses, while redundant movement
stationary logic, reducing
interactables were complexity and
represented by the improving modularity
Object superclass. by keeping object
responsibilities
cohesive.
Introduction | Player progression | Introduced a dedicated The system now UR_INVENTORY
of an was limited to inventory subsystem, which supports a more UR_LOCKER
Inventory transient effects enabled items to be collected, | diverse range of FR_FULL _INVENTORY
Subsystem | like score updates | stored and referenced across | gameplay mechanics FR_APPLE

and basic
powerups which
did not persist
beyond their
immediate use.
Restricting, the
ability to model
more complex
gameplay

multiple player interactions.
Decoupling item management
from temporary gameplay
effects and encapsulating it
within a persistent domain
model.

and more flexible
progression logic. As
item-based
progression and gated
interactions support
varied event-driven
gameplay through
collectible item effects.

FR_COOKIE
FR_DIFF_LOCKER
FR_STUDENT_CARD

mechanics.
Expansion | Original We implemented more Improved cohesion as | UR_LOCKER
of architecture had a | interactable types like: each object is UR_PORTAL
Interactable | smaller set of - Portal responsible for one UR_LOCKED_DOOR
Object interactables and - Npc mechanic, reducing UR_HIDDEN_MAP
Types relied heavily on - Keypad the amount of logic UR_EVENTS
GameScreen to Representing a hard-coded in the main | FR_POSITIVE_EVENTS
orchestrate decomposition of a previously | loop. It also supported | FR_NEGATIVE_EVENT
primary game monolithic interaction the expansion of S
logic. mechanism into a smaller set | hidden/positive/negativ | FR_HIDDEN_EVENTS
of specialised components, e events and FR_DEAN
each of which encapsulates structured progression
its own interaction state (e.g. [through object-based
opened/activated). interactions, as
opposed to hard-coded
logic.
MVC Diagram and Locker Interaction Sequence Diagram:
MvC
CONTROLLER
| @5 Questonscreen \©¢'f§§§:."f§£f$ L |
result J©(VGV§:?§§;:§$;| }» ‘Conceptua\ MVC split (LibGDX screens act as View-Controllers in code). Iﬁ : «‘@G‘ameSCreen| KI(D KeypadScreen| \@ExamQu‘estiunSCreen.‘
; 1 by MpDEL L1,) ‘
\@Collisionchecker| %@Npc| |.©Portal| |©Guard| \@Inventary}(—i \@Keypad| |©Exam|¢ ——————— [

AN

Sequence: Locker awards an item into the Inventory

Pléyér GameScreen | | CallisiunChecker| ‘ Locker‘ | Inventory ‘ | Inventoryltem
| Player hes locker |
Ay S AR i
! movement input / update(delta) _ |
- :" Screen checks interaction :

| isColliding(Player, Locker) _ |
_—>

' { GameScreen triggers open logic :

UDEH()

1 itemld (Inventoryltem or |r|t code)
i

|
alt [itemld != EMPTY]

| additem(itemid)

|_item stored

: HUD update (show item ga\ned)

[nlreﬂdy opened / empty]
' HUD message (empty)

Player

VAN

GameScreen |

| CnllisionChecker| ‘ Locker‘ | Inventory ‘ | Inventoryltem

Method Selection and Planning Changes

Summary of Changes:

We updated the previous team’s method selection and planning processes to reflect
changes in our development tools, team communication platforms and planning approaches.
These changes were made to improve team coordination, development efficiency and clarity
in project tracking.

Detailed Changes and Justifications:

1.

Communication Tool: Whatsapp -> Discord

Original: WhatsApp was used by the previous group for its simplicity and pre-existing
familiarity

Change: Our team migrated to Discord for structured and effective communication
Justification: Discord offers structured communication through the use of channels
within a single server, allowing discussions to be organised by topic (e.g. a channel
for each deliverable). This reduced chat clutter and improved the visibility of
important updates. Discord also offers built-in voice channels and screen sharing
features which facilitated real-time meetings without the need for external apps
alongside efficient collaboration and problem solving. As the majority of the group
were already familiar with Discord, the transition was smooth and significantly
improved our communication during Assessment 2. In addition to using Discord as
the primary communication platform, WhatsApp was kept as a secondary backup
channel in cases where a member had temporary access issues with Discord.

IDE: Intellid -> VS Code

Original: Intellid was chosen by the previous group for its Java-specific tooling and
integration with Gradle/Git

Change: We used VS Code as the primary IDE for development

Justification: All programmers were already proficient with VS Code which eliminated
time spent learning a new IDE and allowed for a clear focus on development.
Through the use of extensions, VS Code fully supports Git version control and Gradle
automation, offering equivalent functionality to IntelliJ. VS Code is also of a
lightweight nature which ensured smooth operation on older hardware, enabling all
team members to contribute effectively without any technical limitations. The use of
VS Code also aligned well with our continuous integration and delivery workflow, as
its Git integration allowed developers to frequently commit, review and merge
changes as part of an iterative development process

Asset Creation: CCO Pack -> Team Created Pixel Art

Original: For the previous group, assets were sourced from a free CCO pack after
Al-generated assets proved inconsistent

Change: A team member created custom pixel art assets using Pixilart (a free online
tool)

Justification: One member creating the new assets ensured consistency across all
game elements and allowed the visuals to be tailored to the maze’s theme more
effectively. This resulted in a more cohesive and polished appearance compared to
using externally sourced assets. Centralising asset creation with a single team
member also reduced dependency conflicts and simplified integration during
implementation, as assets followed a consistent style and resolution from the outset.
Team Structure: Flat hierarchy and subteams -> Agile /Scrum

- Original: The previous team used a flat structure with subteams and weekly meetings
but did not give their methodology an explicit name

- Change: We adopted Agile/Scrum practices with defined roles (Scrum Master,
Product Owner)

- Justification: This change allowed tasks to be assigned according to individual team
members’ strengths. Members confident in coding handled implementation and
testing, while those with strong writing and communication skills led documentation
such as risk management, planning and requirements changes. Responsibilities
were regularly reviewed and adapted as the project evolved, allowing members to
support each other across any overlapping areas and inability to complete segments
of work. This structure reinforced accountability through regular check-ins and
iterative reviews of individual roles and responsibilities - aligning with Agile principles
of collaboration and adaptive planning. This approach helped maximise productivity
by utilising individual expertise while maintaining team cohesion and adaptability -
particularly valuable for the short time scale to complete the assessment. Rather than
maintaining fixed subteams, responsibilities were organised around functional fields
and task dependencies (e.g. backlog preparation, continuous integration and
delivery, review and monitoring). These fields interacted iteratively throughout the
project, ensuring that planning, implementation, testing and evaluation remained
closely aligned. Monitoring was treated as a continuous activity across the entire
project lifecycle, focusing on tracking progress, identifying risks, verifying that client
requirements were satisfied and ensuring that tools and processes were functioning
effectively.

Systematic Plan:
A Gantt chart was used to support systematic planning and scheduling throughout the

project. The chart visualised tasks over time, showing their duration, overlap and
dependencies across the project timeline. This allowed the team to plan work both
sequentially and in parallel, making it easier to coordinate activities, manage workload
distribution and identify potential scheduling risks early. Progress was tracked against the
planned schedule, providing clear visibility of deadlines and task completion whilst enabling
the team to adjust priorities where necessary to remain on track. Timeline snapshots
available at: Timeline | Grep The Exit

November 2025 December 2025 January 2026
WeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr 5a Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo
121314151617 18192021 2223242526 2728629301 2 3 4 5 6 7 B 9 1011121314151617 18192021 222324252627 282930311 2 3 4 5 & 7 B 9 1011 12

Meeting D
Game and system setup

Y’Meeting 1
Cloud systems setup and discussing workload
forming Architecture and requirments

* Meeting 2
OChanging Tools and Processes
.Meeting 3
———F| | Architecure and Fequirements Dacumentation
Meefing 4
W IMVC, sequence and architecture diagram formed

.Meeting 5

%D Logging Requirements
[legging all Risks so far
———=[Continuos Integrations control and process]

.Iﬂlmplementatinn |
r—,‘JTesting aproach and methods plan]

#[Testing and debuging]

QBrainstorming qvaluation methods
|Usertestin d evaluation

Reviewing and preparing presentation
Project Deadline

WeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr 5a Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr 5a Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo TuWeTh Fr Sa Su Mo

1213141516 1718192021 2223 24252627282930 1 2 3 4 5 6 7 B 910111213 14151617 18192021222324252627 282930311 2 3 4 5 6 7 B 9 101112

November 2025 December 2025 January 2026

https://zoey-ahmed-uni.github.io/GrepTheExit/timeline.html

Risk Assessment and Mitigation Changes

We changed the risks that occurred by using the approach of severity and likelihood
rankings during the risk assessment. A new category we added was implementation since it
differs from technological issues. Categories included people, estimation, technology,
implementation and requirements. Additionally, we removed the ownership since risks are
not managed by a single person alone but mostly the entire group instead. For our risk
analysis, we changed the scoring system to resemble the range of difficulty:

Risk Analysis Scale:

Risk Monitoring:

Very Low (1), Low (2), Moderate (3), High (4), Very High (5)

All members are informed about the Risks and monitoring is shared between members and
is analysed by severity and likelihood. We mainly try to solve it or decrease inconvenience,
then at every meeting, the member tasked with tracking risks monitors and assesses the

situation to check if the problem has been solved.

ID [Category Description Severity | Likelihood | Mittigation

R1 | People People getting sick, travelling, or | 4 4 Every member checks up on each
not being available due to other, or the person lets the group
personal matters. know to allow discussion of workload

and deadlines.

R2 | People People having problems 3 1 Members who report problems with
switching communication switching tools or platforms would
platforms and tools. either receive support or would be

checked upon regularly.

R3 | Estimation & Over or under-estimating the 4 3 Whenever a task is in progress, the

People time a task will take, mainly due member(s) in charge of the task will
to unequal workload distribution, be asked if support is needed or to
unavailability, etc. reschedule deadlines.

R4 | Implementation | Bugs or the game failing dueto | 3 1 Our implementation team reviews
a lack of testing. every merge and tests it to minimise

inconveniences.

R5 | Technology Programs, systems, or devices | 4 1 Members affected to let the group

not functioning as expected,
causing people to delay work.

know to troubleshoot and reschedule
if needed.

Most of the risks in the people and estimation category are either subfields of each other or
their severity, likelihood and mitigation changed. R1, 2, and 3 are equivalent to 2 or 3 risks
mentioned by the previous group. The reason we combined some of them is that they're
either almost the same risk or one is the continuation of the other. For our technological risk
that we've changed into implementation (R4) we’ve managed to decrease the severity.

Our final technological risk is equivalent to the majority of the risks mentioned by the prior
group. Our approach consisted of members being informed and those who either had
experience or knew about the problem and knew how to fix it, prioritised troubleshooting.

	Change Process + Tools
	Requirements Changes
	Architecture Changes

