

Change Report

Cohort 2 Team 1
Ahmet Abdulhamit

Zoey Ahmed
Tomisin Bankole

Alanah Bell
Sasha Heer

Oscar Meadowcroft
Alric Thilak

​

Change Process + Tools

To plan the changes required for “Grep the Exit”, our team first held a group discussion to
determine a high-level approach to the new requirements. This included identifying
significant deliverables such as new events, player achievements and creating a functioning
leaderboard. After this overview concluded and a high-level plan was agreed upon, we used
new tools to break these tasks down into individual changes, making it easier to assign and
track work.

To track and manage these changes, we used GitHub’s issue tracker. Issue trackers provide
a structured way to manage tasks within a codebase, allowing each team member to create
issues. Each issue contained a title and a description specifying a feature request or a bug
report with exact steps given to reproduce the bug. This provided the team a single central
location for all change requests and bug reports, avoiding scattered messages and
documents. Related issues could also be linked together using custom labels which helped
the team identify dependencies and determine task priority.

GitHub also enabled effective coordination of task ownership. Each issue could be tagged
according to the type of task it involved, such as new positive or negative events, artwork or
bug fixes. This allowed the programmers to filter issues according to their assigned roles and
focus on tasks in areas of the code they were most familiar with. After triaging, issues were
then assigned to specific team members, making it clear who was responsible for each
change. This approach prevented duplicated work which was an issue flagged by the team
in our reflection of Assessment 1 when multiple coders unknowingly worked on the same
large task.

For both communication and planning we used Discord. Unlike a single group chat on a
platform such as Whatsapp, Discord allowed us to create dedicated channels for different
topics and deliverables such as architecture discussion, CI changes and general deliverable
document communication. This structure improved team coordination and made discussion
more efficient than with previous methods like a Whatsapp chat.

Overall, by combining high-level planning, GitHub issue tracking and structured
communication through Discord, the team was able to systematically plan, implement and
review changes made. This approach ensured that all work was clearly documented,
responsibilities were assigned, dependencies were managed and the team could collaborate
efficiently throughout the process.

Requirements Changes

Following the handover of Assessment 1 deliverables from another team, the requirements
were reviewed against the updated exam brief. Several gaps were identified where the
original requirements no longer fully reflected the required gameplay scope, mechanics and
constraints. As a result, new user and functional requirements were introduced and some
existing requirements were refined to improve clarity, completeness and alignment with the
updated brief. All changes were documented using structured tables to help preserve

traceability with the original deliverables and newly added requirements. The following
changed requirements combined with the new requirements and the previous team’s
unchanged requirements form the full set of requirements for Assessment 2.

Changed Requirements:

ID Previous Description New Description Justification for Change

UR_MAP The user shall be able to
explore a single large maze
in the map

The user shall be able to explore
the large maze main map
alongside a smaller maze in the
hidden room map

Updated to support the addition
of a new hidden-room map

UR_PASSAGE The user shall be able to skip
parts of the maze by
accessing hidden passages

The user shall be able to teleport
to a hidden room via a portal which
remains hidden whilst in the main
maze map

Replaces an undefined
mechanic with a clearly
specified map traversal method
of portals

FR_PROMPT The game shall be able to
display boxes at the bottom
of the screen displaying text
when an interaction begins

Interaction prompts are displayed
near the player’s inventory at
bottom centre of the screen

Updated to improve UI clarity
and consistency with common
interface conventions whilst
making space for the player’s
inventory

FR_BUS The user shall have catch a
bus to unlock the next point
of the game

The user shall have to catch the
bus in order to escape from the
maze and complete the game

Better reflects narrative closure
and end-game progression

UR_EXAM The user shall have to
overcome an exam to unlock
the next point of the game

Exams open an interaction screen
where the user must answer an
exam question to continue, a
correct answer gives a buff whilst
an incorrect answer gives a debuff
to the player

Expanded to clearly define
exam interaction and
consequences

New Requirements:

ID Description Justification for Addition UR Links

UR_LOCKER The user shall be able to interact
with lockers around the map
which will add items to the
player’s inventory

Items within the lockers are a
hidden event and the lockers
support item collection

n/a

UR_HIDDEN_MAP The user shall be able to explore
a hidden-room maze containing a
locker, the Dean and an exit
portal

The hidden map is one of the
hidden events specified in the
brief and it also adds
progression depth

n/a

UR_INVENTORY The user shall have a 3 slot item
inventory mapped to keys 1-3

Necessary to manage
collectible items and choose
when to apply their effects

n/a

UR_PORTAL The user shall be able to teleport
between the two maps via a
portal by using the T key

Enable travel between the two
maps

n/a

UR_LOCKED_DOOR The user shall only be able to
pass through the locked door
after inputting the correct 3-digit
keycode on the door’s keypad

This feature introduces
structured progression to the
game as well as puzzle-solving

n/a

UR_EVENTS The game shall offer several
different events to interact with,
the event types shall be hidden,
negative and positive

Added to align with the
updated exam brief’s
requirements for varied
event-driven gameplay

n/a

FR_APPLE Lockers give an apple 50% of the
time, apples give temporary
increased player speed

One of the positive events
which helps the player
progress around the maze

UR_SPEED
UR_LOCKER
UR_INVENTORY

FR_COOKIE Lockers give a cookie 30% of the
time, cookies add 15 seconds to
the player’s clock

One of the positive events
which supports the time-based
game mechanics

UR_LOCKER
UR_INVENTORY

FR_ROTTEN_APPLE Lockers give a rotten apple 20%
of the time, rotten apples
temporarily slow the player

One of the negative events to
help balance all the buffs the
player is able to receive

UR_LOCKER
UR_INVENTORY

FR_DIFF_LOCKER The hidden room locker shall
always contain a student card

Ensures progression from the
hidden room map

UR_LOCKER
UR_INVENTORY

FR_FULL_INVENTORY Items cannot be collected if the
inventory is already full

Prevents item hoarding and
enforces strategic decisions

UR_LOCKER
UR_INVENTORY

FR_STUDENT_CARD A student card allows
teleportation back to the main
map from the hidden room map

Makes progression rely on
finding an item and ensures
the player has to actively think
to continue playing

UR_LOCKER
UR_HIDDEN_MAP
UR_INVENTORY
UR_PORTAL

FR_DEAN The Dean traps the player in the
hidden room map until the player
finds their student card

Creates a small antagonist
which helps the narrative and
counts as a negative event

UR_HIDDEN_MAP

FR_KEYPAD_SCREEN A keypad UI allows the player to
input codes, clear inputs and
gives feedback on correctness

Required to support the locked
door interaction as the right
code opens the door

UR_LOCKED_DOOR

FR_FIND_KEYCODE Each NPC provides one digit of
the keypad door code

Encourages the player to
explore the map and interact
with NPCs

UR_LOCKED_DOOR

FR_EXAM_NOT_HARD To help ensure UR_FAMILY the
exam questions shall be general
knowledge and not too hard

Ensures compliance with
accessibility requirements by
making sure the exams are
accessible to all ages

UR_FAMILY
UR_EXAM

FR_EXAM_CORRECT Correct exam answers grant the
player temporary guard immunity

Rewards the player’s skill and
helps engage the player with
the game, positive event

UR_EXAM

FR_EXAM_INCORREC Incorrect exam answers Adds a consequence based on UR_EXAM

T temporarily speed up the guards the player’s skill level and
counts as a negative event

FR_POSITIVE_EVENT
S

The player shall be able to
encounter 3 positive events, each
event shall benefit the player in
some way

Added to align with the
updated exam brief’s
requirements for varied
event-driven gameplay

UR_EVENTS

FR_NEGATIVE_EVENT
S

The player shall be able to
encounter 5 negative events,
each event shall hinder the player
from progressing

Added to align with the
updated exam brief’s
requirements for varied
event-driven gameplay

UR_EVENTS

FR_HIDDEN_EVENTS The player shall be able to
encounter 3 hidden events, each
hidden until triggered

Added to align with the
updated exam brief’s
requirements for varied
event-driven gameplay

UR_EVENTS

New requirements were added to reflect mechanics and constraints specified in the updated
exam brief that were not present in the original team’s Assessment 1 deliverables. These
additions, along with refinements to existing requirements, were necessary to fully specify
newly required gameplay systems such as inventory management, hidden maps, full exam
interaction, event-driven mechanics, etc. The revised requirements improve clarity, reduce
ambiguity and ensure full alignment with the updated brief while maintaining traceability with
the original documentation.

Architecture Changes

Our architecture changes were made to fulfil our new set of requirements, while building off
the architecture of the original team’s work. The original architecture was based on the
Model-View-Controller pattern, which our new architecture changes adhered to. We refined
the architecture through a set of linked structural decisions aimed at improving the
modularity, clarity of responsibility and overall maintainability of the codebase, whilst
fostering a more immersive and interactive gameplay experience for the player. In particular,
our implementation steered away from handling all interactions inline inside the main
gameplay loop, by introducing modal, screen-based workflows for UI-heavy features,
alongside a clearer runtime mechanism for world transitions through portals and dynamic
map switching. Additionally, we expanded the domain model and improved its structure
through additional specialised interactable object types, a more interactive exam model,
mediated by dedicated UI screens. Furthermore, the introduction of a persistent inventory
subsystem that supports state-based progression and gating. While our project remains
MVC inspired in its use of models (entities, objects, state) and screens (KeyPadScreen,
GameOverScreen, etc), our architecture strengthens separation of concerns by distributing
input ownership across specialised interaction screens, resulting in a more layered,
screen-driven game architecture. All architecture diagrams and CRC cards can be found at
Previous Deliverables | Grep The Exit under ‘Graphs’ and ‘CRC Cards’

https://zoey-ahmed-uni.github.io/GrepTheExit/deliverables.html

Title Original Change Implemented Justification for
Change

Requirements
Traceback

Improved
Game Flow
and State
Manageme
nt

There were
implicitly fewer
transition types
and less
structured state
flow handled,
primarily through
GameScreen.

New types of game flow
transitions:
Pausing and resuming the
game via ‘PauseScreen’,
A reward/punishment flow for
exams.

Changes improved
state management by
making flow transitions
explicit and supporting
richer game
progression and
consequences.

UR_PORTAL
UR_HIDDEN_MAP
UR_MAP
UR_EXAM
FR_EXAM_CORRECT
FR_EXAM_INCORRECT

Modal
Interaction
Architecture

Most interactions
were handled
inside
GameScreen
while the mainloop
was running. So,
the gameplay loop
handled
responsibilities
like, world
simulation, input
processing and UI
feedback.

We moved UI-heavy
interactions to modal screens
like:

-​ ExamQuestionScreen
-​ KeypadScreen
-​ TutorialScreen
-​ WinScreen

Changes improved
separation of concerns
because those screens
focus on input and UI,
so GameScreen can
focus on world
simulation.
Also increases
modularity due to
higher cohesion per
screen, thus,
improving
maintainability of code.

UR_EXAM
FR_KEYPAD_SCREEN
UR_LOCKED_DOOR
FR_PROMPT

Domain
Modelling of
NPCs

There was no
dedicated NPC
implementation.
The moving
character model
was represented
through entity
subclasses, while
stationary
interactables were
represented by the
Object superclass.

We implemented NPCs as a
subclass of Object,
purposefully reflecting their
nature as stationary
interactables.

Improves semantic
accuracy in our
domain model by
separating moving
agents from static
interactables. So, NPC
avoids inheriting
redundant movement
logic, reducing
complexity and
improving modularity
by keeping object
responsibilities
cohesive.

FR_FIND_KEYCODE
UR_EVENTS
UR_MAP
UR_HIDDEN_MAP

Introduction
of an
Inventory
Subsystem

Player progression
was limited to
transient effects
like score updates
and basic
powerups which
did not persist
beyond their
immediate use.
Restricting, the
ability to model
more complex
gameplay

Introduced a dedicated
inventory subsystem, which
enabled items to be collected,
stored and referenced across
multiple player interactions.
Decoupling item management
from temporary gameplay
effects and encapsulating it
within a persistent domain
model.

The system now
supports a more
diverse range of
gameplay mechanics
and more flexible
progression logic. As
item-based
progression and gated
interactions support
varied event-driven
gameplay through
collectible item effects.

UR_INVENTORY
UR_LOCKER
FR_FULL_INVENTORY
FR_APPLE
FR_COOKIE
FR_DIFF_LOCKER
FR_STUDENT_CARD

mechanics.

Expansion
of
Interactable
Object
Types

Original
architecture had a
smaller set of
interactables and
relied heavily on
GameScreen to
orchestrate
primary game
logic.

We implemented more
interactable types like:

-​ Portal
-​ Npc
-​ Keypad

Representing a
decomposition of a previously
monolithic interaction
mechanism into a smaller set
of specialised components,
each of which encapsulates
its own interaction state (e.g.
opened/activated).

Improved cohesion as
each object is
responsible for one
mechanic, reducing
the amount of logic
hard-coded in the main
loop. It also supported
the expansion of
hidden/positive/negativ
e events and
structured progression
through object-based
interactions, as
opposed to hard-coded
logic.

UR_LOCKER
UR_PORTAL
UR_LOCKED_DOOR
UR_HIDDEN_MAP
UR_EVENTS
FR_POSITIVE_EVENTS
FR_NEGATIVE_EVENT
S
FR_HIDDEN_EVENTS
FR_DEAN

MVC Diagram and Locker Interaction Sequence Diagram:

Method Selection and Planning Changes
Summary of Changes:
We updated the previous team’s method selection and planning processes to reflect
changes in our development tools, team communication platforms and planning approaches.
These changes were made to improve team coordination, development efficiency and clarity
in project tracking.

Detailed Changes and Justifications:

1.​ Communication Tool: Whatsapp -> Discord
-​ Original: WhatsApp was used by the previous group for its simplicity and pre-existing

familiarity
-​ Change: Our team migrated to Discord for structured and effective communication
-​ Justification: Discord offers structured communication through the use of channels

within a single server, allowing discussions to be organised by topic (e.g. a channel
for each deliverable). This reduced chat clutter and improved the visibility of
important updates. Discord also offers built-in voice channels and screen sharing
features which facilitated real-time meetings without the need for external apps
alongside efficient collaboration and problem solving. As the majority of the group
were already familiar with Discord, the transition was smooth and significantly
improved our communication during Assessment 2. In addition to using Discord as
the primary communication platform, WhatsApp was kept as a secondary backup
channel in cases where a member had temporary access issues with Discord.

2.​ IDE: IntelliJ -> VS Code
-​ Original: IntelliJ was chosen by the previous group for its Java-specific tooling and

integration with Gradle/Git
-​ Change: We used VS Code as the primary IDE for development
-​ Justification: All programmers were already proficient with VS Code which eliminated

time spent learning a new IDE and allowed for a clear focus on development.
Through the use of extensions, VS Code fully supports Git version control and Gradle
automation, offering equivalent functionality to IntelliJ. VS Code is also of a
lightweight nature which ensured smooth operation on older hardware, enabling all
team members to contribute effectively without any technical limitations. The use of
VS Code also aligned well with our continuous integration and delivery workflow, as
its Git integration allowed developers to frequently commit, review and merge
changes as part of an iterative development process

3.​ Asset Creation: CC0 Pack -> Team Created Pixel Art
-​ Original: For the previous group, assets were sourced from a free CC0 pack after

AI-generated assets proved inconsistent
-​ Change: A team member created custom pixel art assets using Pixilart (a free online

tool)
-​ Justification: One member creating the new assets ensured consistency across all

game elements and allowed the visuals to be tailored to the maze’s theme more
effectively. This resulted in a more cohesive and polished appearance compared to
using externally sourced assets. Centralising asset creation with a single team
member also reduced dependency conflicts and simplified integration during
implementation, as assets followed a consistent style and resolution from the outset.

4.​ Team Structure: Flat hierarchy and subteams -> Agile /Scrum

-​ Original: The previous team used a flat structure with subteams and weekly meetings
but did not give their methodology an explicit name

-​ Change: We adopted Agile/Scrum practices with defined roles (Scrum Master,
Product Owner)

-​ Justification: This change allowed tasks to be assigned according to individual team
members’ strengths. Members confident in coding handled implementation and
testing, while those with strong writing and communication skills led documentation
such as risk management, planning and requirements changes. Responsibilities
were regularly reviewed and adapted as the project evolved, allowing members to
support each other across any overlapping areas and inability to complete segments
of work. This structure reinforced accountability through regular check-ins and
iterative reviews of individual roles and responsibilities - aligning with Agile principles
of collaboration and adaptive planning. This approach helped maximise productivity
by utilising individual expertise while maintaining team cohesion and adaptability -
particularly valuable for the short time scale to complete the assessment. Rather than
maintaining fixed subteams, responsibilities were organised around functional fields
and task dependencies (e.g. backlog preparation, continuous integration and
delivery, review and monitoring). These fields interacted iteratively throughout the
project, ensuring that planning, implementation, testing and evaluation remained
closely aligned. Monitoring was treated as a continuous activity across the entire
project lifecycle, focusing on tracking progress, identifying risks, verifying that client
requirements were satisfied and ensuring that tools and processes were functioning
effectively.

Systematic Plan:
A Gantt chart was used to support systematic planning and scheduling throughout the
project. The chart visualised tasks over time, showing their duration, overlap and
dependencies across the project timeline. This allowed the team to plan work both
sequentially and in parallel, making it easier to coordinate activities, manage workload
distribution and identify potential scheduling risks early. Progress was tracked against the
planned schedule, providing clear visibility of deadlines and task completion whilst enabling
the team to adjust priorities where necessary to remain on track. Timeline snapshots
available at: Timeline | Grep The Exit

https://zoey-ahmed-uni.github.io/GrepTheExit/timeline.html

Risk Assessment and Mitigation Changes

We changed the risks that occurred by using the approach of severity and likelihood
rankings during the risk assessment. A new category we added was implementation since it
differs from technological issues. Categories included people, estimation, technology,
implementation and requirements. Additionally, we removed the ownership since risks are
not managed by a single person alone but mostly the entire group instead. For our risk
analysis, we changed the scoring system to resemble the range of difficulty:

Risk Analysis Scale:

-​ Very Low (1), Low (2), Moderate (3), High (4), Very High (5)

Risk Monitoring:
All members are informed about the Risks and monitoring is shared between members and
is analysed by severity and likelihood. We mainly try to solve it or decrease inconvenience,
then at every meeting, the member tasked with tracking risks monitors and assesses the
situation to check if the problem has been solved.

ID Category Description Severity Likelihood Mittigation

R1 People People getting sick, travelling, or
not being available due to
personal matters.

4 4 Every member checks up on each
other, or the person lets the group
know to allow discussion of workload
and deadlines.

R2 People People having problems
switching communication
platforms and tools.

3 1 Members who report problems with
switching tools or platforms would
either receive support or would be
checked upon regularly.

R3 Estimation &
People

Over or under-estimating the
time a task will take, mainly due
to unequal workload distribution,
unavailability, etc.

4 3 Whenever a task is in progress, the
member(s) in charge of the task will
be asked if support is needed or to
reschedule deadlines.

R4 Implementation Bugs or the game failing due to
a lack of testing.

3 1 Our implementation team reviews
every merge and tests it to minimise
inconveniences.

R5 Technology Programs, systems, or devices
not functioning as expected,
causing people to delay work.

4 1 Members affected to let the group
know to troubleshoot and reschedule
if needed.

Most of the risks in the people and estimation category are either subfields of each other or
their severity, likelihood and mitigation changed. R1, 2, and 3 are equivalent to 2 or 3 risks
mentioned by the previous group. The reason we combined some of them is that they’re
either almost the same risk or one is the continuation of the other. For our technological risk
that we’ve changed into implementation (R4) we’ve managed to decrease the severity.

Our final technological risk is equivalent to the majority of the risks mentioned by the prior
group. Our approach consisted of members being informed and those who either had
experience or knew about the problem and knew how to fix it, prioritised troubleshooting.

	Change Process + Tools
	Requirements Changes
	Architecture Changes

