
 
Continuous Integration 

Cohort 2 Team 1 
Ahmet Abdulhamit 

Zoey Ahmed 
Tomisin Bankole 

Alanah Bell 
Sasha Heer 

Oscar Meadowcroft 
Alric Thilak 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



​
Continuous integration method and approach 
 
What continuous integration means in this project 
Continuous integration is a practice in development which automatically verifies changes 
when they are integrated into a shared repository. When new code is added, the project is 
checked to confirm that it still builds correctly and that any existing functionality has not been 
broken (by running all implemented code tests). 
 
How the team integrates work 
The team works on a shared GitHub repository. Each coder will create individual features or 
fixes on separate branches. When the code is ready, the coder will submit a pull request to 
the main branch on GitHub. 
 
Why automated builds and tests are essential 
Automated builds and tests are particularly important for this project as there are multiple 
contributors and a codebase which is continually expanding. Without continuous integration, 
errors such as syntax errors or broken game logic could go undetected until later in the 
development. Continuous integration provides immediate feedback, so issues can be fixed 
before future branches depend on faulty code. 
 
Why this approach is appropriate 
This continuous integration approach is appropriate for the scale of the project, as it is 
lightweight, easy to maintain and provides feedback efficiently. This allows us to focus on 
development. 
 
CI infrastructure actually implemented 
We implemented continuous integration using GitHub Actions. GitHub Actions allows us to 
define automated workflows which are stored in the repository itself using configuration files. 
Our project is built using Gradle and the continuous integration pipeline runs on a virtual 
machine provided by GitHub, using Java 17. Since GitHub builds and runs the tests on a 
clean VM, this ensures the project works regardless of the developer’s local environment. 
 
CI workflow integration 
The continuous integration workflow is defined in a YAML config file in 
.github/workflows/ci.yml. It is configured to run automatically when someone submits a pull 
request to the main branch. This ensures that all changes are verified before being 
integrated. 
 
The workflow does the following steps: 
 

-​ Downloads the code in the repo and checks it 
-​ Sets up the required Java environment 
-​ Executes “./gradlew clean build”, which compiles the project and runs all automated 

tests 
 
 



Why we made these choices 
We catch errors early on by ensuring all changes are verified before being integrated. The 
single Gradle command makes it simple for team members to contribute, allowing them to 
repeatedly validate the project using the singular Gradle command. The CI pipeline runs in a 
fresh environment which performs a clean build. This means the results are not influenced 
by previous outputs from builds, ensuring that any failures reflect real code issues. 
 
What is checked by the CI workflow 
When the continuous integration workflow runs, the project is compiled and all automated 
tests are executed. These tests make sure that the game logic is correct. For our project, 
examples include player logic, the collision checker and inventory logic. If the project does 
not compile or any logic fails, the workflow fails. Below is shown how successes and failures 
appear on GitHub: 
 

 
 
 
Feedback and enforcement 
As the results of the workflow are shown directly on the pull request, it is a good indication of 
whether the pull request can be safely merged or not. If the workflow fails, GitHub will show 
which step failed, which allows the team to fix the issue more efficiently. It also ensures that 
broken code does not get merged by accident to the main branch. 
 
Why this infrastructure is sufficient 
This infrastructure provides all the functionality required for our project. It automatically 
verifies integrations, provides fast feedback and enforces that our builds are correct. On top 
of this, it is lightweight, not overly complex and easy to maintain. This makes it a reliable tool 
to ensure safety of the main branch and reduce the risk of problems later on due to 
integrating broken code. 
 
 


