Architecture

Structural and Behavioural Diagrams. and CRC cards

The structural diagrams, as well as the use case diagrams, were designed using PlantUML. Our state
diagrams were designed using LucidChart.
Our behavioural diagrams can be found on our website under appendix D.

© Main

SpriteBatch batch
void Create()

@ CollisionChecker

isColliding(Entity, MapObjects)
isCollidng(Player, Entity)
isColliding(Player, Object)

entities,

@) Entity

Texture front, back, left, right
Sprite front, back, left, right
Hitbox hitbox

float X

float Y

float speed

]

(© character __ [«Fr DIALOGUES
String dialogue «FR_PROMPT»

L

©pus :::# wmjus,,i

@ Player

float spawnXx
float spawnY

void respawn()

@ GameScreen

TiledMap map
OrthogonalTiledMapRenderer mapRenderer

OrthographicCamera camera «UR_SCORE» :

Player player «UR_TIME» ©7 © [REA N0 @ PauseMenu @ExamScreen
Exam exam «UR_GAMEOVER» TutorialScreen Texture playButton

Character guard «UR_SPLAYER» Texture pui{Buttan U REUCIENEE UG,

Ler guarc f «FR MAZE» Texture controls «UR_TUTORIAL» quitt Texture guitButton Texture q2 M
MapObjects collisionObjects RECErTG - Texture settingsButton Texture settingsButton Texture q3
MapObjects objectObjects wUR_INPUT * void Render() Texture tutorialButton
i « » — - -
intecoreh) «FR_KEYPRESS» void Render() Y] REE S poidliencent
void Render()
void Input()
void Logic()

©WinScreen

@GameoverScreen

void render()

void render()

objects),

© Exam

@ Object

Sprite sprite
String name

ExamScreen questions

void Display(questions)

void SetPosition

«FR_TEST»
R

«UR_INTERACT»

(© Powerup

void setPowerUp()

HEME»

= { xUR_SPEED»ﬁ

https://www.plantuml.com/plantuml/img/bLLRRzem57xFhx2w5v3AmxQtgKBY4YXQQQ8aR6MQL9d4WDTWfxRJjPhwttVis74AhD9umFQvd-zS8Xyegx301rHIHjHBHH0NQi-32kSFU4VG1M6AAaha1VemcqtXX_u4U2ELmBb2eMQ-02KZpweM16q5P-eIRK3x4fLa2tT1TtiLf9MWwXt-DLKR_epsvWYs9SSAtTbpRKzP4L84z_V1Qv2NM4eKb_Y520I-2IkaZyQ9uz_ihljOQ-KdJWiaY27q-gsjoHxhbCwPIvMWR8SAYak-gqaJ0UEGZeaTyMr7-mkwkfebzzF5w2QQhyBXy2SpX3Y9bd4s75fturgUE3esgcMikV4g1TLNNnQ--KLorLH5rwLRbSP3P2Hq-0tqqXmk6OOFf4KZ9Ihc4ihCMOj7-0nDuI9iRMbgcWj267giYTGQiZKpfRA2YlHQJly49sFLvfI5QTR0iuB7TRWCszVYDWkJqSJ35VFVHAogqu2SRwbJC3AzKwzEMpi6wsaSXjEtS4gJauPJj_Xi1fORntF0oIOCNKvBKYnnXGwu2Y8z9plESEd82OH61FJ0mT-jcC3LdkOJC2OmoiqHsEwjp15OlF4XyBsqgx4e0h3Sf2jHpikIIe3M4hgyfYCSWpBe-PmBOljVKV3PejL41qYPru9LjNAF6xwZ-HaCEq0u62THuakMBJhrcu-MOVGjJ5f26j-CrkuDjL-EVdZfDCoonUsyK_rubRMYNyDrd8IfxdzRawnMNC0mDk7uvPF3RX6ybATf7YVpre9BA5jbKG9pwpqjCMLBmkhEXjFb6jTAmQWuqcDDrH49sb71cCaZih9-BVbCdAxVSIt9aMVOMVM1_BVlCqxyXFlMTlO--kidV_tyRpFVAMkj-FLw9AIx9teYuZt9pZZgnZMpQ5URhqQxpyPOvNluaC1_QsmY25QaY-F43SnaJ_8762dZcKf3Bm2bNhDyBv6Vf7xB1tOpf9TsH_VVg3fUezUaO1S96jI3mM28p0HsQKFaFgWj-MemiCFhQOF2g5loNm00

Our CRC cards are displayed below:

Class: Entity

Responsibilities

Collaborators

Load and store textures and sprites

Track entity position

Update sprite position during movement

Create common movement and sprite accessors
Dispose of textures when done

Sprite

Texture

Player (subclass)
Guard (subclass)

Class: Player

Responsibilities

Collaborators

Manage player spawn point

Reset player position when respawning
Update sprite position after movement
Maintain sprite direction (front/back etc)

e Entity (superclass)

Class: CollisionChecker

Responsibilities

Collaborators

e Detect collisions between entities and objects e Entity
e Build hitboxes for entities e Player
e Determine overlaps e Object
e Handle collision exceptions

Class: Main

Responsibilities

Collaborators

e Set and manage screens

e Provide accessors to game dimensions (width,
height)

e Initialise and manage a SpriteBatch

e Game (LibGDX superclass)
e SpriteBatch
e MainMenu

Class: Object

Responsibilities

Collaborators

Class: Object

Load and store texture and sprite for objects
Store name identifier for map matching
Position object based on map data

Provide accessors to sprite and name
Dispose of textures when done

CollisionChecker
Texture

Sprite

Exam (subclass)

Class: Exam

Responsibilities

Collaborators

Represent an exam object

Track whether an exam has been completed
Check and update completion

Inherit sprite name and data

e Object (superclass)

Class: GameScreen

Responsibilities

Collaborators

Manage and render main gameplay screen
Handle player input

Control camera and viewport

Update game logic (movement, collisions etc)
Detect and handle collisions via CollisionChecker
Render map, entities, and objects

Track and display score and time

Manage pause and resume

Main

Player

Guard

Exam
CollisionChecker
PauseScreen

Class: MainMenu

Responsibilities

Collaborators

Display menu screen

Draw and update menu buttons
Detect mouse hover and click
Start new GameScreen on input
Exit application on input
Maintain button textures
Dispose of textures when done

e Main
e GameScreen

Class: PauseScreen

Responsibilities Collaborators

Display pause menu overlay e Main

Draw and update menu buttons e (GameScreen
Detect mouse hover and click

Return to GameScreen at current state on input
Exit application on input

Maintain button textures

Dispose of textures when done

Class: TutorialScreen

Responsibilities Collaborators
e Display tutorial instructions and control key e Main
images e MainMenu
e Detect mouse hover and click e GameScreen
e Return to MainMenu or GameScreen on input
e Manage viewport and scaling
e Dispose of textures when done

Syst ic Justification of the Architect

Each decision that we made towards the architecture was made to fulfill more of the requirements. To keep
track of this, each class diagram is clearly labelled with the requirement that each component helps to achieve.
This allowed us to keep track of our priorities, ensuring that components that were needed for requirements
with “Shall” priority were designed first. The architecture supports a single player (UR_SPLAYER), in a maze
designed in Tiled (UR_MAP and FR_MAZE), that can interact with exams and university themed characters
(UR_THEME).

Our architecture is inspired by the Model-View-Controller (MVC) pattern. In this case, the views are the screens, the
models are the entities and the objects, and the controllers are in the core package. Using this structure means that
the code will be more maintainable, so it will be easier to alter aspects of the system or add new features without
interfering with the other components. This design pattern also means that the implementation team can work in
parallel to tackle different aspects of the system at the same time. This is because the separated nature of the MVC
design pattern means that developing on one of the three parts of the pattern is unlikely to interfere with the other
parts. For example, one team member can design the menu user interfaces whilst another is working on collision
logic. This can greatly speed up the development cycle, as less conflicts will have to be resolved whilst parallel
development of the architecture occurs. This is essential for this task given the short timeframe we have. The
decoupling of each section of the architecture reduces dependencies and prevents code from becoming tangled.
This means that the architecture has a low technical debt, making future refactoring much simpler. Furthermore,
MVC supports multiple, modular views, meaning that adding new screens to the architecture is quick. This allowed
us to fulfill FR_MENU, FR_SHOWTUTORIAL and FR_FINISHTUTORIAL.

We considered a monolithic architecture, however quickly rejected the idea as it would lead to tight coupling
between elements of the architecture, meaning that our project could quickly become difficult to manage,
refactor and up-scale.

Game entities and objects have been separated into separate packages in the architecture. This signifies and
enforces the separation of the dynamic objects (entities) and static objects (objects). This means that
interactions between dynamic and static objects can have rules. For example, an entity can interact with other
entities as well as objects, however objects cannot interact with entities.

We decided to design all of the entities and objects as extensions of an abstract class. We designed one within
the "entities" package and one within the “objects” package. This means that it is simple to set up new entities
and objects, as essential attributes and methods are inherited from the parent class. The architecture is
therefore scalable, with new models (entities and objects) being quick and easy to add.

We designed our collision detection system within the “core” package so that it can be abstracted from the
implementation of the entities and objects that require collision logic. This means that each new entity and
object can use the existing collision logic for their detections. The abstraction also means that if bugs were to
occur due to the collision system, or the collision system needed refactoring, then the system would only need
to be changed once to take effect on each collidable entity and object. This follows our architecture’s modular
design.

Archi Design P
Initial Design - A.1

We decided to represent our architecture using class diagrams that adhere to the UML standard. This meant
that each component of the diagram had a single clear definition. Initially, we designed the project with little
knowledge of the LibGDX game library. So, we created a higher level class diagram to lay out the foundations
of how objects relate to others and how they will interact with each other in the game. This consisted of objects
such as Player, Character, Game and Maze. We linked each class to a requirement using their unique IDs so
that we could track which ones have been fulfilled by the system. Using this system of design, we could focus
on creating an initial architecture that allows us to fulfil each requirement once implemented. The initial design
we came up with is shown in appendix A.1.

First Iteration - A.2

Now that each requirement had been fulfilled, we iterated on this initial design to optimise the implementation
process. We decided that the methods and attributes in a class should be given access restrictions to
maximise encapsulation of important attributes such as textures, with getters and setters implemented where
required. We decided to make use of the layering architecture pattern, as shown in the next architecture
design iteration in appendix A.2. This meant that abstract versions of methods and attributes could be shared
to multiple subclasses by a parent class, increasing the modularity of the architecture.

Second Iteration - A.3

We then decided that we had a good enough architecture to begin implementing the game in LibGDX. This is
because we had a solid base to begin the implementation of the system, but the architecture was still of a high
enough level to allow flexibility around the limitations and requirements of the LibGDX library which we were
not yet aware of. This meant we could begin a cycle of iteration, first attempting to implement the architecture
that we had designed, learning the functionality of the LibGDX library along the way, and then updating the

architecture based upon what we learned. We found out that we do not need a Maze class for the map, as
LibGDX has a TiledMap class that allows you to load maps created in tiled straight from the tmx file and then
render them using methods within the class. This meant that we could remove the Maze class and replace the
maze attribute with the built in tiled map loader and renderer. We also learnt that each part of the game should
be separated into different screen classes, with a Main class holding the logic to decide which screen to
display. Each entity is now defined as its own attribute in GameScreen so each one can be assigned its own
type. We found out that LibGDX stores all code inside of packages. To begin the process of transferring over to
using packages, we first created an architecture based fully within the “core” package, as displayed in
appendix A.3. The “Game” and “Screen” classes methods and attributes are not displayed as they are LibGDX
classes.

Third Iteration - A.4

With this re-evaluation of the architecture, we now had a window displaying a tiled map with menus. The
implementation team then notified the architecture team that it was becoming difficult to navigate the codebase
with many different classes being introduced. So, we proceeded to modify the architecture to separate related
classes into their own packages, as can be seen in appendix A.4. This would help the implementation team
create a more navigable codebase and promote encapsulation and modularisation.

Fourth Iteration - A.5

The implementation team then reported that the entity system was flawed. According to their research, it was
difficult to implement collisions with the current system. This was due to the hitbox implementation not taking
into account the hitboxes of the walls in the Tiled map. This meant that the entities' hitboxes had nothing to
interact with. We decided that the best way to fix this was to introduce a new class to check for collisions, and
to also store the objects placed in the tiled map in a variable. We decided to store this in the core package so
that the collision checking can be imported wherever it is needed throughout the program with the required
amount of encapsulation. We also decided to separate the entity architecture into two parts, an “entities”
package and an “objects” package. This is because the logic required for each object was much less than the
logic required for each entity, so separating them and simplifying the Object classes would make the codebase
more easy to manage for the implementation team. This also optimised the architecture as each object holds
less properties than each entity, meaning that the memory gains stack up as more objects are added to the
game. This architecture helps our game satisfy NFR_LOAD and NFR_FRAMERATE. With the new collision
system, we also moved the input handling into the GameScreen class to check for collisions when the user is
controlling the character. This meant that the objects from the Tiled map could be kept private to the
GameScreen class. We also added a Logic method to the GameScreen class to handle game logic related to
collisions.

Fifth Iteration - Final Architecture

Finally, we altered the architecture to handle collisions between objects and entities. The implementation team
reported that it was difficult to create the logic for the Exam classes being completed, as there was no way to
locate what Exam the player was interacting with. We updated the design of the CollisionChecker class to
contain a new method that checks for collisions between the player and objects in the “objects” layer of the
Tiled map. The method returns the name of the object so that the Object class instance with a matching name
can be marked as completed. We also moved the logic for adjusting the score, timer and reset into the logic
method of the GameScreen class. The implementation team also requested for the architecture to define the
respawn functionality, meaning that we had to add spawn point attributes to the design of the Player class.
Also, displaying classes already implemented by LibGDX within the architecture diagrams was causing
confusion within the implementation team, so we removed these from the class diagrams.

	Class: Entity
	Class: Player
	Class: CollisionChecker
	Class: Main
	Class: Object
	Class: Exam
	Class: GameScreen
	Class: MainMenu
	Class: PauseScreen
	Class: TutorialScreen

